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ABSTRACT
Given the importance of privacy, many Internet protocols are nowa-
days designed with privacy in mind (e.g., using TLS for confidential-
ity). Foreseeing all privacy issues at the time of protocol design is,
however, challenging and may become near impossible when inter-
action out of protocol bounds occurs. One demonstrably not well
understood interaction occurs when DHCP exchanges are accompa-
nied by automated changes to the global DNS (e.g., to dynamically
add hostnames for allocated IP addresses). As we will substantiate,
this is a privacy risk: one may be able to infer device presence and
network dynamics from virtually anywhere on the Internet — and
even identify and track individuals — even if other mechanisms to
limit tracking by outsiders (e.g., blocking pings) are in place.

We present a first of its kind study into this risk. We identify
networks that expose client identifiers in reverse DNS records and
study the relation between the presence of clients and said records.
Our results show a strong link: in 9 out of 10 cases, records linger
for at most an hour, for a selection of academic, enterprise and
ISP networks alike. We also demonstrate how client patterns and
network dynamics can be learned, by tracking devices owned by
persons named Brian over time, revealing shifts in work patterns
caused by COVID-19 related work-from-home measures, and by
determining a good time to stage a heist.
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1 INTRODUCTION
Privacy violations frequently headline the news. Notorious inci-
dents from the past years have often involved threat actors, ques-
tionable data processing practices, or human error. Given the impor-
tance of privacy, many Internet protocols are nowadays designed
with it in mind (e.g., using TLS for confidentiality). Still, it is chal-
lenging to foresee all privacy issues at protocol design, and this
may be infeasible if interaction out of protocol bounds can occur.

One protocol that has prompted privacy concerns is the Dynamic
Host Configuration Protocol (DHCP), which is a network manage-
ment protocol that is used to dynamically assign IP addresses to
devices on a network. DHCP uses a client-server model and allows
for client devices to send optional communication parameters to the
server. A number of research efforts have focused on DHCP privacy,
demonstrating that locally monitoring and sniffing DHCPmessages
– which can contain unique client identifiers – enables geotemporal
tracking of clients, even if clients move between networks [2, 3, 25].
Groat et al. [10] even introduce the idea of remotely monitoring
DHCP client devices, using compromised DHCPv6 relays inside
the monitored network.

DHCP exchanges can be accompanied by changes to the Domain
Name System (DNS). DHCP servers can update local name services,
to associate devices on the local network with a name. Servers can
also make changes to the global DNS, for example by adding host-
names (i.e., Pointer (PTR) records) for allocated IP addresses. PTR
records can then be publicly accessed using Reverse DNS (rDNS)
lookups, mapping IP addresses to hostnames. RFC 7844 [12] rec-
ognizes the privacy risk of carrying over unique client identifiers
from DHCP options to DNS, but the extent to which this happens
in practice has received little attention in the research literature.
Furthermore, making automated changes to DNS records based
on DHCP exchanges is in itself a privacy risk that seems to have
stayed under the radar so far. As we will demonstrate, this practice
allows network dynamics to be observed from virtually anywhere
on the Internet. The risks resulting from this are that one can track
the presence of client devices in networks, may be able to reliably
identify specific devices and tie these to persons, and might even
be able to track clients across multiple networks.

In this paper, we perform a first of its kind study into these risks.
Our goal is to substantiate that the interaction between DHCP
and DNS leads to unwanted leaks of potentially privacy-sensitive
information, which is then disclosed to the public Internet due to
the open nature of the DNS. We demonstrate the existence of this
threat by investigating rDNS data. Our results show that there is a
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disparity between the guidance in standards with respect to privacy
and DHCP and DNS interaction, versus the actual implementation
in practice. This disparity is what allows for sensitive information
to leak to the public Internet.

The contributions of this paper are:
(1) We show that DNS records contain unique identifiers in

practice, even including sensitive information such as client
device types and device owner names.

(2) We demonstrate that networks of varying types (academic,
enterprise, ISP) expose such information.

(3) We analyze the relation between the presence of dynami-
cally added hostnames in the DNS and the presence of client
devices on networks.

(4) We demonstrate that outsiders can use reverse DNS to track
specific clients and learn network dynamics.

(5) We discuss possible causes and ways to mitigate risk.
The remainder of this paper is organized as follows. In Section 2

we provide background information and discuss related work. We
introduce our data sets in Section 3. We detail how we identify
networks that expose dynamic behavior Section 4. In Section 5 we
focus on leaking privacy-sensitive information in rDNS records.
We look at timing of dynamically added rDNS entries in Section 6.
Then, in Section 7, we present a number of case studies to show
how client patterns and network dynamics can be learned. In Sec-
tion 8 we discuss our findings and possible steps toward mitigating
the privacy risk. Finally, we document ethical considerations in
Section 9 and conclude in Section 10.

2 BACKGROUND & RELATED WORK
2.1 Background
In this section we provide background information on reverse and
forward DNS, the DHCP, and IP Address Management (IPAM) sys-
tems.

DNS. The DNS is a critical component of the Internet and can
be seen as its phonebook. It is responsible for translating between
human-readable names and IP addresses. The DNS is operated as a
distributed hierarchical database, in which parts of the namespace
are delegated to different parties [18]. The DNS is typically used
to translate domain names to IP addresses, which is referred to as
forward DNS. The DNS also enables reverse resolution, in which an
IP address is translated to a hostname. The DNS uses special zones
for the purpose of the latter. The in-addr.arpa. zone is used to
translate IPv4 addresses to hostnames [19]. This zone contains so-
called PTR (Pointer) records, which one can query for by using the
reversed form of the IP address one wishes to translate. With the
reversed form, the DNS can be queried similarly as with forward
DNS, except that a PTR record is requested, rather than an A record.
Example 1 provides an example of an IP address and its reversed
form for a PTR query.

What? Value
IP address to translate 93.184.216.34
Reversed DNS query 34.216.184.93.in-addr.arpa.

Example 1: Reverse IPv4 Example

DHCP. The Dynamic Host Configuration Protocol (DHCP) is a
network management protocol that can be used to dynamically
assign IP addresses to devices on a network, using a client-server
model. When a client device wishes to join the network using
DHCP, it issues an address request to DHCP servers, either via
broadcast or unicast in the event a server address is already known.
The DHCP server can offer and subsequently allocate an IP address
to the client for a set amount of time. Upon allocation, the client
is told which address it is allowed to use and for how long. This
allocation is called the DHCP lease and before it expires, the client
can request renewal. If a lease expires, the associated IP address
is considered reallocable. When a client leaves the network it can
signal to the DHCP server, through a so-called release message,
that it is in the process of leaving the network. The server can then
reallocate the IP address sooner. Release messages are not always
sent, as clients can go out of range, or users can unplug devices
from the network abruptly.

DHCP client-server exchanges involve more information than
the allocated IP address and expiration time. The server can convey
communication parameters such as the default gateway. The client
in turn can send information such as an optional Host Name [1] or
Client FQDN [23]. The prior is commonly used by DHCP servers
to identify hosts and also to update the address of the host in local
name services. The latter would allow the server to update global
name services, if the client so desires (cf. §3.3 in [23]).

IPAM Systems. IP Address Management (IPAM) systems allow
network operators to manage various parts of IP address infrastruc-
ture. These systems are typically used in larger enterprises, where
manually managing IP address space (e.g., assigning subnets or
IP addresses) is no longer feasible. IPAM systems can be used to
manage DHCP as well DNS.

Interplay between DHCP and DNS. DHCP and DNS can be linked
together, through IPAM systems or by other means. If they are
linked, then when a client requests a DHCP lease and is allocated
an IP address, various changes to the DNS related to the IP address
are made automatically. For example, the DHCP server can update
information for the allocated IP address in local name services,
which the server may do on the basis of the previously mentioned,
client-provided Host Name.1

Automated changes to DNS are not limited to local name services
per se. Changes to the global DNS can also be made. For example,
upon allocation of an IP address, a hostname can be associated with
said address by adding a PTR record to the global DNS. Evidently, if
changes to the (public) DNS are made as client devices join or leave
a network, one may be able to infer network dynamics by capturing
DNS changes. The privacy risk further increases if client-provided
parameters are used in DNS updates, as these may allow for specific
devices to be identified and their presence or absence to be tracked.
RFC 7844 [12] recognizes the potential risk of carrying-over unique
identifiers to the DNS. As we will show, the makes, models and
even owner names of devices running the DHCP client can appear
in DNS data (e.g., Brian’s iPhone).

1Note that hostname is commonly used to refer to the name to which an IP address
translates (i.e., the name in its PTR record). To avoid ambiguity, we use Host Name to
refer to the DHCP client parameter.
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2.2 Related Work
We consider several types of related work: gaining information
from hostnames in rDNS, DNS and privacy, and DHCP and privacy.

Information in hostnames. It is known in the literature that re-
verse DNS can reveal information about hosts. Various works ex-
ist in which authors successfully use hostnames to gain insights
into Internet infrastructure and topology. Central to such works
is the notion that hostnames can encode meaningful information.
Chabarek et al. [6] used rDNS data to study part of the Internet
core, by inferring link speeds of router and switch interfaces from
hostnames. Huffaker et al. instead extract geographic information,
using a dictionary of city names and airport codes [11]. Follow-up
works by Luckie et al. focus on learning how to extract autonomous
systems and network names from hostnames [16, 17].

The aforementioned works focus mostly on core infrastructure
such as routers. Lee et al. [15] instead shift focus to end-users,
i.e., customers of Internet Service Providers (ISPs). In their paper,
they study means to infer the connection types of hosts in access
networks. Zhang et al. [28], in turn, infer and geolocate topology
in regional access networks, with the aim of studying architectural
choices made by ISPs.

While all these works extract meaningful information from host-
names, to the best of our knowledge no works exist that consider
what can be learned about networks by observing automated and
continual changes to rDNS records. We bridge this gap and reveal
that rDNS changes can provide insight into network dynamics and
client behaviors. A common assumption in related work also seems
to be that meaningful information is included in rDNS by network
operators on purpose. We instead substantiate that reverse DNS
can inadvertently contain privacy-sensitive information.

DNS and Privacy. The DNS is no stranger when it comes to
privacy considerations on the Internet. In fact, DNS privacy has
received a lot of attention over the past years. Often, the focus is
on keeping interactions with the DNS confidential, or on aspects
of DNS data sharing and processing [13, 14, 26, 27]. An example
is QNAME-minimization [5, 7], which helps improve privacy by
minimizing information sent from the recursive to upstream name
servers. Other examples involve efforts to add confidentiality by
encrypting queries and answers, for example via DNS-over-HTTPS
(DoH) or -over-TLS (DoT). Generally speaking, studies that relate
to the DNS often involve forward DNS. The reverse side of DNS is
less frequently studied. Tatang et al. [24] studied privacy leaks in
rDNS to a certain extent, after observing that some misconfigured
name servers provide outsiders with answers to PTR queries for
private IP addresses (e.g., RFC 1918 [9]), if such addresses are used
inside the networks of the misconfigured servers. In their paper
they characterized the country and network distribution of such
servers, and studied privacy-sensitive patterns in hostnames, re-
vealing end-user devices as well as security-critical infrastructure
such as firewalls.

DHCP and Privacy. The DHCP protocol has given rise to privacy
concerns, which led to discussions in the Dynamic Host Configu-
ration (DHC) working group. These discussions resulted in RFC
7844 [12], which recognizes that DHCP client messages can con-
tain unique client identifiers. Such identifiers can be used to track

clients, even if devices take care of randomizing other link-layer
identifiers such as MAC addresses. RFC 7844 also recognizes that
identifiers can carry-over to the DNS. They propose anonymity pro-
files, which minimize disclosure of client-identifying information
in DHCP messages.

Tront et al. [25] proposed using a dynamic DHCP unique iden-
tifier (DUID) based on the same randomization technique used in
IPv6 privacy extensions. Groat et al. [10] show how the use of
DHCPv6 to overcome the privacy issue of SLAAC deployment can
still lead to the possibility to track users because of the use of static
DUIDs. They also note that remote tracking may be possible, via
compromised DHCPv6 relays that forward messages to attackers.
Bernardos et al. [3] showed how randomization of L2 addresses was
a convenient solution to mitigate location privacy issues on public
Wi-Fi connections, evaluating also user experience and potential
IP address pool exhaustion. Aura et al. [2] investigated how DHCP
can be used to provide mobile clients with authenticated network
location information, which clients can then use to decide how
to behave in specific networks. In their paper, they consider the
privacy of mobile users, by minimizing client information in DHCP
messages, at least until the network has been authenticated. Finally,
while the previously discussed work by Tatang et al. [24] did find
patterns in the DNS that likely resulted from DHCP carry-over, the
authors appear to not have considered the role of DHCP.

The literature has thus established that DHCP messages create
opportunities to track client devices, even between subnets and
networks. Central to most of these works is the ability to observe
messages, which requires observer presence in network. Our work
instead focuses on the risk associated with the interplay between
DHCP and DNS. We extend and substantiate the risk that theoreti-
cally existed and study the problem in the wild.

3 DATA SETS
We use three data sets in this paper: two large-scale data sets of
IPv4 rDNS measurements, and a smaller data set with ICMP and
rDNS measurements that we collect ourselves.

Full address-space reverse DNS measurements. The bulk of our
analysis relies on measurement data from reverse DNS measure-
ments that cover the entire IPv4 address space. Several projects
make rDNS data sets available for research. In this study, we use data
sets collected by Rapid7’s Project Sonar [22] and by the OpenINTEL
project [21]. The Rapid7 data set is collected on a single weekday
every week and OpenINTEL collects daily snapshots. Given that our
goal is to show evidence of dynamic address assignments relating
to human behavior, we prefer the data from OpenINTEL because of
its daily measurement frequency. Where we need data that predates
the first collection date obtainable from OpenINTEL, we use data
from Rapid7 instead. Jointly, both data sets cover the period of our
study: 2019-10-01 to 2021-12-31. Table 1 shows summary statistics
on the data used from Rapid7 and OpenINTEL. The table details the
number of data points in each data set as well as the daily average
number of unique PTR records observed by each measurement.

Reactive fine-grained measurement. The third data set that we
use in this work is a custom, supplemental measurement, described
in Section 6.1. This data set includes both data from a dedicated
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Table 1: Statistics for the data sets that we obtained from
Rapid 7 and OpenINTEL.

Start date End date Total # responses # unique PTRs

Rapid7 Sonar 2019-10-01 2021-01-01 77G 1,381M
OpenINTEL 2020-02-17 2021-12-01 396G 1,356M

ICMP measurement and fine-grained data from a reactive rDNS
measurement. The supplemental measurement was performed from
2021-10-27 to 2021-11-16. Summary statistics for this supplementary
data set are given in Table 3.

4 IDENTIFYING DYNAMICITY EXPOSURE
In this section, we discuss how we identify networks that expose
dynamic behavior through rDNS entries. We then proceed to apply
our identifying methodology to our data set.

4.1 Methodology
To study whether networks dynamically add and expose privacy-
sensitive information through rDNS, we first need to identify which
networks exhibit signs of dynamic behavior in our data sets. We
focus only on such networks because we aim at investigating tem-
poral patterns of client devices. Other networks can still expose
privacy-sensitive information in PTR records (i.e., hostnames) in a
non-dynamic sense. However, these networks cannot be leveraged
to learn temporal patterns related to clients, therefore we do not
include them in our analysis. To identify dynamic networks, we
use the daily data sets obtained from OpenINTEL and apply a set
of heuristics in three steps detailed below.
Step 1: First, we perform a daily analysis over data covering a
three-month period. We group results by /24 prefix and compute
the unique number of IP addresses for which we see a PTR record
on each day. We then discard the /24 prefixes for which we never
observe more than 10 addresses a day over the three-month period
under consideration. For the prefixes for which we do, we also
record the maximum number of daily IP addresses per /24 over the
three-month period.
Step 2: Next, we perform a day-by-day comparison for each /24
considered in over the three-month period and record the absolute
difference in number of IP addresses for which we observe a PTR
record. We then compute the “change percentage” by dividing this
difference by the maximum number of addresses recorded in the
previous step.
Step 3: Finally, we label /24 prefixes as dynamic if the change
percentage exceeds 𝑋% on at least 𝑌 days over the entire three-
month period. We set 𝑋 to 10 (which sets the threshold at a single
address changed for blocks with 10 or more addresses), and 𝑌 to 7,
based on experiments.
Validation:We validate our heuristic approach against our own
campus network. The addresses for this network come from a single
/16 prefix with a numbering plan in which some subprefixes are
used for dynamic allocations whereas other subprefixes contain
static allocations. We run our approach to identify change-sensitive
/24 blocks. Our method marks 40 prefixes as dynamic, and 206

prefixes as static. We confirmed these results with our campus
ICT department. The 40 prefixes we identify as dynamic are con-
firmed as true positives. In addition to this, our IT department
indicated a further 83 prefixes use dynamic address assignments
(DHCP), but with static rDNS entries (i.e., fixed-form PTR records
such as host1234.dynamic.institute.edu). This confirms that
our heuristic approach correctly identifies prefixes with dynami-
cally updated PTR records.
Threshold and dynamicity: our dynamicitymethodology strongly
depends on setting thresholds (for the change percentage X and
the number of days Y ). Given the values that we chose, we discard
a large number of /24. Our rationale behind choosing such strict
thresholds is that we want to identify dynamic networks with high
confidence. As the preceding validation involving ground truth
demonstrates, our threshold choices are reasonable. Thus, using
these thresholds we establish a lower bound of dynamicity exposing
networks.

4.2 Identifying Networks
We start out by identifying networks that exhibit dynamic behavior
using the approach detailed in Section 4.1. We use the three-month
period from 2021-01 to 2021-03 to identify such networks. Over
this period, we see PTR records for a total of 6,151,219 unique /24
networks. Out of these, 134,451 are marked as dynamic using our
heuristic approach. This result demonstrates that there is alarming
evidence of networks exposing dynamics in (global) rDNS.

To gain a further intuition on how dynamic behavior in rDNS is
visible as part of a larger network, we map any /24 prefix that we
identify as dynamic back to the most-specific announced, covering
prefix. Figure 1 shows the distribution of the fraction of /24 prefixes
that make up a prefix that exhibit dynamic behavior. As the plot
shows, generally speaking, only a small subset of the prefixes that
make up a network exhibit dynamic behavior. An intuition for this
result is the use of numbering plans, where specific subprefixes
are used for dynamic clients (recall how this is done in our own
campus network from the validation of our heuristic approach in
Section 4.1). We leave further study of external visibility of such
network segmentation as future work. Finally, we note that the
result in Figure 1 also guides the choice of which subprefixes to
subject to our supplemental measurement, which we return to later
in Section 6.1.

5 IDENTIFYING PRIVACY LEAKS IN RECORDS
In this section, we identify the publication of privacy-sensitive
information in rDNS and demonstrate an associated risk.

5.1 Methodology
Recall that our goal is to identify privacy-sensitive information in
dynamically updated rDNS entries. In order to zoom in on such pri-
vacy leaks, we perform further filtering of our data sets, consisting
of the following steps:

Extracting Common Terms. We start by analyzing terms that
commonly appear in rDNS records. To find terms we use a regular
expression that extracts words consisting of alphabetical characters
from PTR records, of which we can count occurrences.
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Figure 1: Distribution of the fraction of /24 prefixes that
show dynamic rDNS behavior as part of the most-specific
announced prefix they are part of. Ticks show the minimum,
median and maximum number of /24 subprefixes that show
dynamic behavior.

Common Suffixes. Hostnames for related IP addresses can have a
common hostname suffix, towhich host-specific parts are prepended.
Consider, e.g., client1.someisp.com and client2.someisp.com.
We identify suffix keywords (someisp and com in this example).

Generic Terms. Among non-suffix keywords, we identify a num-
ber of generic terms that convey location or router-level infor-
mation. These terms are less likely to be used in client hostname
prefixes. Examples are north and south. We use these terms to
exclude router-level PTR records (see also [16, 17]).

Given Names. From the remaining PTR records we then select
those that contain given names, as given names can be indicative
of a user client device hostname. The US government keeps track
of and publishes names given to newborns.2 We select names for
the years 2000 up to 2020, ranked by popularity over this 20-year
period. We select the top 50 most popular names.

Dealing with City Names. Router-level hostnames can encode lo-
cation information such as city names [11], which can overlap with
given names (e.g., Jackson and Jacksonville). Instead of excluding
such mismatches via enumeration (e.g., using a list of city names),
we count the number of unique given name matches per hostname
suffix and require this to be above a certain threshold. Our reason-
ing here is that if dynamic client devices are present, the number

2https://www.ssa.gov/oact/babynames/

of uniquely matched given names will be relatively larger than the
number of unique city names in router-level hostnames.

5.1.1 Identified Networks. We apply the aforementioned steps to
daily rDNS data from OpenINTEL to find networks that likely add
rDNS records for dynamic client devices and carry over unique
identifiers to the DNS. Henceforth we refer to the found networks
as the identified networks.

(1) We start from the set of networks showing dynamic behavior,
based on the heuristic approach described in Section 4.1.

(2) We then exclude rDNS entries with generic router-level
terms.

(3) We match the remaining PTR records against a list of given
names.

(4) We extract hostname suffixes from the results and calcu-
late per suffix: (1) the number of records; (2) the number of
uniquely matched given names; and (3) the ratio between
the two.

(5) We select suffixeswith at least 50 unique given namematches.3
(6) We further require a ratio of 0.1 or more3, to find a variety

of matched names in sizeable networks.

5.2 Signs and Causes of Privacy Trouble
We now zoom in using the additional filtering steps described in
Section 5.1. After filtering, we identify 197 networks that meet our
strict criteria. We index these networks by hostname suffix (TLD+1)
and manually classify them by network type. We start by making a
number of general observations about these networks.

Given names. Figure 2 shows the number of given name matches
in the rDNS data. The blue bars account for any matching PTR
record. The red bars only count records that belong to networks that
meet the uncertainty-minimizing thresholds and criteria set out in
Sections 4.1 and 5.1. Figure 2 shows that given names are generally
more common in prefixes that show dynamic behavior. Please
note that, due to the logarithmic y-axis, the difference between the
number of matches before and after filtering easily amounts to an
order of magnitude.

Common Appearances in Hostnames. We investigate whichwords
commonly co-appear alongside given names in hostnames, postu-
lating that these terms may enable insight into how given names
ended up in hostnames to begin with. From the common terms that
occur a hundred times or more we manually select those that we
think reveal information about client devices other than the user’s
given name.

Figure 3 shows the terms we selected, along with the number of
PTR records in which the terms appear, before and after imposing
the strict thresholds. The frequent co-appearance of terms such as
iphone, android and galaxy are a strong indication that DHCP
clients on a variety of mobile devices send the name of the device
to the DHCP server, seeing as phone names can be formed of the
owner’s name and make or model (e.g., Brian’s iPhone). The ap-
pearance of terms such as laptop and desktop are indicative of
behavior of DHCP clients on other types of devices.

3We note that our aim is not to exhaustively identify and study all dynamic net-
works, but rather to identify a small set which likely leak privacy-sensitive information
through rDNS entries. See also Section 9 in which we discuss ethical considerations.
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Figure 2: Given names for newborns (Top 50 sorted by US popularity) as observed in reverse DNS entries. The plot shows the
total number of matches and the number of matches after filtering the networks (logarithmic scale).
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Figure 3: Terms frequently in hostnames along given names,
before and after imposing given name thresholds (logarith-
mic scale ). The column total is the sum, not a term.

As previously discussed in Section 2, RFC 7844 recognizes the
risk of carrying over unique client identifiers from DHCP to DNS
because these identifiers can be used to track clients [12]. Our find-
ings do not only demonstrate that identifiers are in fact carried
over in the wild, but also reveal that the content contained in iden-
tifiers is in itself privacy-sensitive. For example, being able to tell
the make and model of a client device may benefit sophisticated
attackers, who could use this information to pre-select relevant
exploits. Owner names, in turn, can tie IP addresses to users, which
could be used for a number of malicious purposes.

We suspect that phone and computer names are sent via the
DHCP Host Name. While we do not claim that DHCP clients are
necessarily at fault here, we do note that these terms can help
identify the makes and models of devices and that this may require
mitigation steps.

Beyond Given Names. While the approach we chose to identify
networks hinges on the appearance of given names, we recognise
that some commonly co-appearing terms can also be used inde-
pendently. As our aim is not to exhaustively identify networks,
this is not something we explore in this paper. We note that we
considered terms of three or more characters. While shorter terms
do co-appear, they add a lot of noise. As an example, consider the
term hp, which may indicate HP laptops and desktops, but can also
be a substring in other terms.

0% 20% 40% 60% 80% 100%
Percentage of networks

 62
%

 15
%

 11
%

  9
%

  3
%

Academic ISP Other Enterprise Government

Figure 4: Breakdown of the 197 networks over the types aca-
demic, ISP, enterprise, government and other.

Network Types. We use a manual selection process to infer the
type of each identified network by looking at hostname suffixes.
The specific types that we identify are: academic, ISP, enterprise,
government and other. We use regular expressions to match records
against .edu and .ac, both of which indicate academic use, as well
as .gov for government use. To find other network types such as
ISP and enterprise networks, we use manual inspection. Figure 4
shows a breakdown of the results for the 197 identified networks.
The majority of networks, 61.9%, is academic – these contain school,
university and research institution networks. ISPs account for 15.2%
of the networks, 9% are enterprise networks and 3% are classified as
government networks. Finally, 11.2% have the label other, indicating
that we were unable to clearly classify their type.

Key takeaways: There are strong signs that networks of various
types expose the presence of dynamic clients in rDNS. A problem
beyond merely carrying over unique client identifiers from DHCP
messages to the DNS becomes apparent: the makes, models and even
owner names of client devices can be learned.

6 TIMING OF RDNS ENTRIES
This section first explains our supplemental measurement to collect
finer-grained timing information on dynamic client behavior in
networks that exhibit dynamicity in rDNS entries. Next, we present
our findings on the timing of rDNS records.

6.1 Methodology
The highest temporal measurement granularity of the two existing
rDNS data sets that we use is daily. This means we cannot infer sub
day level dynamicity (e.g., devices joining and leaving the network).
To perform a more detailed study of the timing of rDNS entries and
attempt to capture network dynamics beyond what can be learned
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Table 2: Reactive measurement and back off strategy.

Number of measurements and measurement intervals

12 times in the 1st hour at 5-minute intervals
↩→ 6 times in the 2nd hour at 10-minute intervals
↩→ 3 times in the 3rd hour at 20-minute intervals
↩→ 2 times in the 4th hour at 30-minute intervals
↩→until client goes offline once at 60-minute intervals

from daily rDNS measurement data, we perform a supplemental
measurement against the IP address space of a subset of identified
networks.

Network Selection. To comply with the requirements from our
IRB (see Section 9), we select a minimal subset from the 197 iden-
tified networks for supplemental measurement and further vali-
dation. We select nine networks – three networks of the three
most-common types academic, ISP and enterprise (from Section 5.2).
In the selection of three academic networks we favor one particular
network as we have a posteriori knowledge about IP address distri-
bution that has utility towards one of our case studies (Section 7.3).

We order the list of networks of each type by the number of
given name matches and start selecting from the top. We perform
an additional, manual inspection of PTR records to ensure that
the networks we select show evidence of dynamically assigned
hosts. We make a weighted selection of which address space of
selected networks to target with supplemental measurement. For
large networks, we dig a little deeper to observe which IP subnet
(/16 or more specific) contains the most dynamically assigned
hosts, and target this address space only. Whether or not networks
respond to ICMP ping scans does not factor into the selection
process.

Measurement Mechanics. Our supplemental measurement tech-
nique to investigate the timing of rDNS records involves two types
of probing: (1) ICMP probes; and (2) finer-grained reverse DNS
lookups. We run an hourly ICMP ping scan against the selected
networks to determine if client devices have joined or left the net-
work since the previous hour, provided of course that the devices
respond to pings.

We hypothesize that client devices on a network go through the
following three phases:

(1) The client joins the network and is allocated an IP address.
An rDNS entry is added or updated by the DHCP server. The
client device may start to respond to ping requests.

(2) The client is active on the network. In this phase it keeps
responding to pings and the PTR remains unchanged.

(3) The client leaves the network and no longer responds to
pings. The address may be deallocated and the PTR may be
changed or removed. This is subject to behavior of the DHCP
server and may also depend on whether or not the client
releases its lease (see Section 2.1).

Phases 1 and 3 can speak to the relation between the presence
of a client and the presence of an rDNS record. To measure this,
we trigger reactive measurements when we infer, from the hourly

1 2 3

device comes online, 
start of high frequency 

ICMP scan

device in operation,
slow decline in 

ICMP scan frequency

device offline, revert 
to regular ICMP 
scan frequency

spot rDNS measurement
to record PTR value

device offline, start frequent
rDNS measurement

rDNS record
removed

ICMP scans

rDNS queries

Figure 5: Graphic representation of the mechanics of the
supplemental measurement. Time flows from left to right,
the two bars represent when ICMP and rDNS measurements
are scheduled, numbers correspond to device activity phases.

ICMP ping scan, that a client has newly appeared on the network.
We perform a reactive ping and trigger an rDNS query. We then
continue with pings at five-minute intervals and gradually back
off. After pinging 12×, which takes one hour, we reduce to ten-
minute intervals during the second hour. The full back off schema
is shown in Table 2. Once we infer that the client is no longer
reachable, we reactively perform rDNS lookups for the IP address
in question, following the same back off schema. Figure 5 shows a
graphic representation of our supplemental measurement.

We use Zmap [8] for the ICMP measurements. Zmap allows
us to easily implement rate limiting and IP address blocklisting.
The blocklisting capability is used to allow subjects to opt-out (see
Section 9). We have set up our measurement infrastructure such
that information about the measurement is easily findable, and
contact details are given to allow opt-out of the measurement.

For the rDNS measurement we use custom-built software wrap-
ping dnspython.4 We rate-limit requests to authoritative name
servers to reduce the impact of our measurement on the DNS name
servers as much as possible. We query the authoritative name server
for the IP address in question directly, to make sure we get a fresh
answer (i.e., not from a cache). Both Zmap and our custom-built
software write the results as CSV files to disk. Zmap only includes
hosts that were reachable in its output.

Supplementary Measurement Data. The supplementary rDNS
data may contain resolution errors, which come in the form of
NXDOMAIN, authoritative name servers failing to answer, or timeouts.
In our data set it is clear which are correct PTR responses and
which are errors. The shortest follow-up time is five minutes. For
this reason we add, next to the original timestamp, a truncated
timestamp per five minutes to the ICMP and rDNS measurement
data points. We can then merge supplementary measurement data
based on IP address and timestamp.We next determine the start and
endpoints of client activity by relating measurement data points.
We are mostly interested in knowing what happens to the rDNS
after a client joins or leaves. However, by considering rDNS data
from around the time of the client joining, we can also verify if
rDNS state is reverted after a client has left.

4https://www.dnspython.org/
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Figure 6: DNS errors observed during the supplemental mea-
surement.

We assign activity at the IP address level and give each address,
start and end point combination a group ID. This group ID allows
supplementary measurement data to be tied to specific client activ-
ity periods. As a last step we aggregate by group ID, including the
timestamps of the last ICMP and rDNS measurements, and the first
and last measured rDNS entries. For groups to be usable towards
making inferences, each should include at least successful ICMP
probes and rDNS lookups for phases 1 and 3 (the client joining
and leaving the network). If the group’s data shows that the rDNS
record is added and then removed, we can reliably infer a relation
between the rDNS record and observed client activity, which allows
us to investigate the (temporal) relation between the presence of
clients on the network and the presence of rDNS records.

6.2 Observations of Client Activity
Table 3 shows summary statistics on the supplemental measure-
ment, which we ran from 2021-10-27 to 2021-12-05. Table 4 shows
additional, per-network information related to the supplemental
measurement. The nine (anonymous) networks are shown, along
with their type, size of the targeted IP address space, and number
of addresses that respond to ICMP probes. For two out of three
enterprise networks, we do not see responses to ICMP pings at all.
We suspect the operators of these networks block pings on ingress.
For one academic network (Academic-B) only two hosts responded
to ICMP pings consistently throughout the measurement, but these
particular IP addresses do not have PTR records. While we receive
responses from within all three ISP networks, the responsiveness
rates vary. We suspect that, in these networks, no blocks are im-
posed by the operator, and responsiveness thus fully depends on
hosts being online.

We reiterate that the networks were selected because they show
strong signs of adding dynamically assigned hostnames to rDNS.
So even for the networks (or hosts) that block ICMP probes, rDNS
data can be used to learn client device presence. In addition, rDNS
queries reveal the hostname attached to the IP address, something
ICMP probes do not provide.

Our supplemental measurement resulted in errors at times. Next
to the normal responses, we saw name server failures, timeouts, and
NXDOMAIN responses. Figure 6 shows the number of errors compared
to the number of IP addresses seen per day (note the logarithmic
y-axis). Fortunately, the number of errors is low relatively to the
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(a) Absolute numbers of groups for a given (x-axis) minutes differ-
ence. First three hours are shown.
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Figure 7: Difference in minutes between last ICMP sample
and rDNS sample per measurement group.

number of queries performed. In traditional DNS sense, receiving
an NXDOMAIN response is seen as an error. In our case, however, this
is a bit more nuanced. Depending on the time frame, a PTR could be
missing because it is yet to be added to the DNS (phase 1 of client
activity) or already removed (phase 3).5

As explained in our methodology (Section 6.1), we group sup-
plementary measurement data points. Table 5 shows a breakdown
of the groups in the supplementary data, starting with all mea-
surement groups, down to those that can be used to make reliable
inferences. The first group subcategory, successful responses, en-
sures the group has successful ICMP probes and rDNS lookups
for the client joining and leaving the network (i.e., no timeouts
or errors). The next subcategory, PTR reverted, involves groups in
which we observe that the PTR is changed and reverted during and
after the client’s inferred presence. Of this subcategory, in about 1
out of 4 cases, timing mechanics of the ICMP probes, which cannot
be accounted for at run-time without compromising the back off
mechanism, make the results less reliable. After filtering these out,
we are left with 419,453 usable groups.

Validating Timing Aspects. We can now shed light on the tempo-
ral relation between the presence of clients on the network and the
presence of rDNS records. Figure 7a shows the number of groups
offset against the time between a client leaving the network and PTR
removal. The peaks around multiples of an hour suggest that PTR
records are removed due to the expiration of a DHCP lease, which
is often set to an hour for a fast turn-over rate. The peak close to
the five minutes mark can be explained by clients cleanly leaving a
network (i.e., by sending the optional DHCP release message upon
leaving the network). If the DHCP server or IPAM system removes
the PTR, we would see this five minutes later as the (respective)
probes are sent in five-minute intervals.

5Sending additional PTR lookups for phase 1 would result in fewer inconclusive
measurements, but the phase 3 issue cannot be corrected for during measurement.
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Table 3: Supplemental measurement statistics.

Start date End date Total # responses # of unique IP addresses observed # of unique PTR records observed

ICMP 2021-10-25 2021-12-05 45,496,201 80,738 -
rDNS 2021-10-25 2021-12-05 11,731,348 54,456 180,614

Table 4: The 9 networks targeted for supplemental measure-
ment, along with their type, the size of the targeted address
space, and number of addresses that respond to ICMP probes.

Network size Addresses observed Percent
observed

Network name

Academic-A /16 31,454 48.0%
Academic-B /16 2 0.0%
Academic-C /16 21,602 33.0%
Enterprise-A /17, /19 24,055 58.7%
Enterprise-B 3 * /16 0 0.0%
Enterprise-C 5 * /24 0 0.0%
ISP-A 3 * /22 1,073 34.9%
ISP-B /16, /17, /18 357 0.3%
ISP-C /16 1,102 1.7%

Table 5: Breakdown of supplemental measurement results,
down from all groups to those enabling inferences.

#groups Fraction of parent

All groups 6,297,080 100.0%
Successful responses 582,814 9.3%

PTR reverted 581,923 99.9%
Reliable timing alignment 419,453 72.1%

Figure 7b breaks down timing information for the individual
networks targeted for supplemental measurement. The networks
Enterprise-B and Enterprise-C are not shown, because no ICMP ping
responses were received from these networks. Academic-B is not
shown because the two hosts responding to ICMP did not have
a corresponding rDNS entry. The CDFs show that in about 9 of
10 cases, the rDNS entries reverted within 60 minutes of a client
leaving the network. We already demonstrated that the presence
of client devices on the network can be learned from rDNS, which
anyone can query. The fact that records do not linger long in most
cases escalates the privacy risk: the timing enables observation of
network dynamics. The differences in lingering between Academic-
A and Academic-B, as apparent in Figure 7b, can be explained by a
longer DHCP lease time. If these networks predominantly update
rDNS in response to leases expiring, rather than to DHCP release
messages, the rDNS records linger longer.

Key takeaways: In networks that expose the presence of dynamic
clients, there is a strong link between the existence of a PTR record
for an IP address and the presence of a client device, which has been
assigned that address. In 9 out of 10 cases, PTR records linger for 60
minutes or less after client disappearance.
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Figure 8: Six weeks in the Life of Brian(s). Weekends (gray)
and Thanksgiving weekend (purple) are highlighted through
shading. IP addresses are encoded with colored bars.

7 CASE STUDIES
Now that we have demonstrated that rDNS entries can be used
to infer the presence of client devices on networks, we present a
number of case studies. These case studies serve to look at some of
the consequences and further substantiate the privacy risk.

7.1 Life of Brian(s)
To demonstrate the severity of the privacy risk, we use rDNS data
to follow persons named Brian over time. For this we assume that
the given name in the hostname reflects the name of a network
client’s owner. We use our supplementary rDNS measurement data
for this case study. It is important to note that while we reactively
looked up PTR records with ICMP pings as the trigger point during
supplemental measurement, anyone with the capability to do fre-
quent PTR lookups can capture the same patterns that we discuss
in this case study (i.e., no ICMP required).

We use the data of the network Academic-A, which is an aca-
demic network in the US with campus housing. Figure 8 shows
six weeks of client hostnames containing the given name Brian on
Academic-A. We have color-coded IP addresses in the figure. Times
in the figure are in the local timezone. Our intuition is that these
hostnames are not related to a single Brian, but rather two or maybe
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three. The use of a private and work phone is not uncommon, but
multiple laptops in active use arguably is. The clients brians-air,
brians-mbp and brians-phone show regular patterns. Especially
brians-mbp in week two shows very regular activity: a couple of
hours around noon, every day.

We choseAcademic-A and these six weeks because of the Thanks-
giving weekend (the weekend of the fifth week). Thanksgiving is
a US holiday in which many students go home to be with their
families. Thanksgiving is always on a Thursday. In 2021, it fell on
the 25th of November. The Friday and Monday after Thanksgiving
are known as Black Friday and Cyber Monday, and many stores
promote sales around these days, typically on electronics. In our
results, brians-phone and brians-mpb seem to leave the network
around Thursday. Striking is that brians-galaxy-note9 appears
in the afternoon on Cyber Monday. We have not observed this
hostname before this time. We speculate that a Brian may have
bought a Samsung Galaxy Note 9 during the Black Friday or Cyber
Monday sales.

This case study shows that rDNS data provides insights into the
behavior of clients to which hostnames are dynamically assigned.
Since the hostnames contain given names, this may even be tied
to specific individuals. If one knows or were able to infer how
addresses are assigned to, e.g., specific buildings [28] on campus,
one could track, from virtually anywhere on the Internet, a Brian
around campus as he goes from lecture to lecture.

7.2 Working from Home
For the second case study, we move away from tracking specific
(Brian-owned) clients over time and focus on investigating the over-
all dynamics of select networks instead. We use the OpenINTEL-
provided rDNS data for this case study, to demonstrate that daily
PTR measurements already offer insight into network dynamics.
We select all three academic networks for this case study, as well as
enterprises B and C, as these five networks show a specific change
in user behavior that we wish to highlight in this case study.

For each of the selected networks, we calculate the total number
of PTR records on any given day (i.e., we do not require given
names to be present, etc.). Our aim is to see if there is a correlation
between the presence of rDNS entries and lockdown regulations
due to the COVID-19 pandemic. We expect enterprise networks to
experience a drop in daily entries as employees were required to
work from home. For academic networks this may be a bit more
nuanced. Education buildings may see fewer clients, but with on-
campus student housing, the client concentration may shift without
it necessarily being visible in the total number of rDNS entries.

Figure 9 shows for each network the percentage of rDNS entries
relative to the maximum number observed, over 2020 and 2021.
The three academic networks are shown at the top. The selected
enterprise networks at the bottom. We compare the public COVID-
19 related news reports of Academic-A (shown in red in the figure)
with the presence of rDNS entries. Upon making this comparison,
we see a clear connection between the two.6 For the times at which
a moderate or high risk was reported to students and staff, sharp
decreases in daily rDNS entries records are visible. After reports of

6We do not link to these reports to protect the identity of network Academic-A.
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of rDNS state. OpenINTEL started daily rDNS measurements
in February 2020.

a low risk of COVID-19 prevalence on campus, a sharp increase in
network client device presence is visible.

For Academic-B we observe a marked reduction in rDNS entries
during the first period of COVID-19 lockdowns, after which the
number goes back up to about 95% of what we observed before the
start of the pandemic. By September 2021, the level returns to that
of before the pandemic, with the dip at the end corresponding to
the Christmas holiday break.

The networks of Enterprise-B and Enterprise-C show significant
decreases in rDNS entries in March and April of 2021. It stands
to reason that these decreases are related to COVID-19 measures.
Enterprise-B shows a partial recovery in the number of entries
around May of 2021, which could be a sign of loosened restrictions,
either by the government or by the employer.
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In Figure 10 we look at network Academic-C in more detail.
As this is the home institution of the authors, we know which IP
subnets are used for on-campus student housing and educational
buildings, and when buildings were closed. In this graph we show
both Rapid7 and OpenINTEL data. The COVID-19 lockdown mea-
sures were introduced shortly after OpenINTEL started its rDNS
measurements (2020-02-17). We use Rapid7 data, which has weekly
granularity, to extend visibility into the early months of 2020.

In March a crossover between PTR records for educational build-
ings and student housing is clearly visible, signifying that: employ-
ees are working from home, educational buildings are empty, and
students study from their on campus residences. The decreases at
the end of October for both the educational buildings and student
housing corresponds with the fall holiday week. A similar drop is
visible at the end of the year for the 2020 Christmas break.

In absolute numbers (not in figure), the reverses for the edu-
cational buildings remain much higher than for student housing,
which can be explained by having more address space assigned to
educational buildings, with more static hosts online. The Rapid7
curves in Figure 10 (dashed) largely overlay and confirm the obser-
vations we make from OpenINTEL data. Additionally, given that
Rapid7 data extends visibility into 2019, we can see that the number
of network clients before the crossover is relatively stable. The 2019
Christmas break is also visible in Rapid7 data, as well as a drop
towards the end of February 2020 that likely relates to Carnaval
celebrations.7

While our case study into compliance with work-from-home
measures is relatively harmless, it does show the extent to which
even rDNS measurement data of daily granularity can be used to
learn network dynamics, possibly for nefarious purposes. Our
approach to observing work-from-home patterns using rDNS data
adds adds to existing efforts in the literature towards this end (e.g.,
observing shifts in traffic volumes).

7.3 When to stage a heist?
Suppose that you want to stage a heist. There is something valu-
able in a building and you want to steal it while the least amount
of people are around. Ideally, from the robber’s perspective, they
are able to determine the point in time at which the fewest dy-
namic clients are around. This evidently requires high-frequency
rDNSmeasurements. For ethical reasons, we have not instrumented
such a measurement. For this case study, we rely on data from our
supplemental measurement instead.

We consider one week of supplementary data for the network
Academic-A. This network responds to ICMP pings, which we use
to support our findings. We stress, again, that ICMP responsiveness
is not required. Even networks that block ICMP may be observed
via rDNS, as our second case study shows (recall from Section 6.2
that networks Enterprise-B and Enterprise-C do not respond to ICMP
probes).

Figure 11 shows the number of active clients inferred in the
network Academic-A between 2021-11-01 and 2021-11-07, both for
rDNS lookups (blue) and ICMP probes (red). The diurnal pattern
of the network is visible, with most activity during the day and
into the evening, while the least activity is at night and early in the

7A local Catholic holiday.
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Figure 11: One week of measurements from Academic-A to
demonstrate when one might stage a heist.

morning. The rDNS measurements (blue) give a rough indication
of the best time for the heist. As an example, on weekdays the data
hint at approximately 6AM as a good time. We also show activity
based on ICMP responses (red) for comparison and to support our
findings. The ICMP results for the most agree. For networks that do
not block ICMP, the robber could of course also use ICMP probes.
In absolute numbers, the rDNS lookups pan out lower than the
number of ICMP probes, which is due to the reactive nature of the
rDNS measurement.

This case study shows the feasibility of one example of how out-
side observations of dynamically assigned hostnames can be used
for nefarious purposes. These observations can help a potential
attacker to learn working patterns without being physically present
at the location. Our supplemental measurement is reactive and does
not try to establish the number of clients on a network at any given
time. A targeted measurement at a higher frequency would likely
give better results. We leave a study to confirm this as future work,
as this is out of scope for this paper.

8 DISCUSSION
Our findings are disconcerting. While existing literature has shown
that meaningful information can be extracted from hostnames
primarily without considering continual changes to reverse DNS
records, we reveal that observing automated changes to rDNS can
provide insights into client presence and network dynamics. The
publicness of rDNS severely increases this risk, enabling anyone
on the Internet to observe automated changes. An adversary with
measurement capability and knowledge about a potential target
can gain valuable insights following an approach similar to ours.
We keep the invasiveness of our case studies in check and tailored
our approach, but given recent findings that hostnames can encode
building locations [28], it appears feasible that for some networks,
rDNS data can be used to geotemporally track users at the building
level.

An arguably sensible mechanism to limit the tracking of net-
work client devices by outsiders is blocking ICMP pings at network
ingress. Two of the networks we used for validation do not respond
to ICMP pings. At the same time, the records these networks dynam-
ically add to the global DNS, as well as the time these records linger
after clients have left, allow anyone who frequently queries for
rDNS records to observe the presence of clients in these networks.
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A notion that other works that study hostnames have in com-
mon is that meaningful information is encoded in hostnames on
purpose, especially for router-level entries. Our results substanti-
ate that the interplay between DHCP and DNS can inadvertently
provide anyone with DNS lookup capability insights into end-user
client identifiers. Our results also reveal a more severe problem:
privacy-sensitive information such as device owner names appear
in the global DNS. While our validation covers nine networks,
this problem is likely not limited to these networks. Our results
thus confirm a risk outlined in RFC 7844 [12]: DHCP clients send
revealing information in optional parameters. Based on our obser-
vations of terms commonly co-appearing with given names (e.g.,
brians-ipad and brians-galaxy-note9), we suspect that client
implementations on various makes and models of phones and com-
puters send device names to the DHCP server. While our choice to
match against popular names given to US newborns creates bias
towards these names, we accept this bias as we set out to substanti-
ate the privacy risk rather than to exhaustively identify all rDNS
records that contain privacy leaks.

Steps towards Mitigating the Problem. After raising these issues
we would like to start the discussion on how to solve the problem.
Evidently, the interplay between DHCP and DNS and the extent to
which configuration and protocols permit client identifiers to flow
from one protocol to another is at the core of this problem. While
we have not investigated this extensively, we identified a number
of IPAM softwares that make it easy to automate DNS changes.
For example: Bluecat,8 Efficient IP,9 Infoblox,10 Men & Mice,11 and
Solarwinds.12 It is unclear to us if and which DHCP servers or IPAM
systems come with default settings that carry over client identifiers
to the global DNS. We would argue that it is rarely a good idea
to indiscriminately carry over DHCP client-provided information
such as device names to publicly accessible PTR records. Using some
sort of hash seems prudent, although this may make hostnames
less sensible. While we have not thoroughly investigated reasons
for device manufacturers to send device names to DHCP servers,
we know that for Bluetooth and Wi-Fi Direct pairing, sharing such
information helps identify the device in question. The DHCP Host
Name option is commonly used for identification and to update the
address of the host in local name services (see Section 2.1). The
Client FQDN [23] in turn can instrument global changes, if the
client so desires. An open question is which option devices send
identifying info in, why, and whether or not this is used as intended.

A large part of the problem is the practice of dynamically adding
PTR records. While unique identifiers in PTR records enable tracking
of specific clients, even record presence in itself provides insights
into network dynamics, which combined with other information
(e.g., knowledge about building-level IP subnet assignments) stands
to reveal a lot. This should be better understood by network op-
erators. Our advice to network operators to reduce the harm of
this problem is to block the propagation of Host Name information
from DHCP to DNS. This can be done by reviewing and adapting
the configuration of the internal networks. IPv6 configuration also

8https://bluecatnetworks.com/
9https://www.efficientip.com/
10https://www.infoblox.com/
11https://menandmice.com/
12https://www.solarwinds.com/

requires attention. In our study, we mainly focus on IPv4 addresses
due to the complexity of efficiently scanning the IPv6 address space
at scale. However, an attacker willing to infer information on a spe-
cific target can leverage previous studies (e.g., Borgolte et al. [4]) to
perform a targeted scan. In addition, when focusing on IPv6, atten-
tion should be put on investigating the interaction between domain
names and IPv6 addresses when SLAAC and stateless DHCPv6 are
in use [20], since this can lead to even more fine-grained tracking
of a specific host, thus increasing privacy risks.

9 ETHICAL CONSIDERATIONS
We follow best practices with regards to Internet measurements
during our study. Where possible, we rely on existing data sources
(Rapid7, OpenINTEL) rather than conducting our own Internet-
wide scans. For the supplemental measurement we use to augment
the existing data sets, we ensure that we rate limit our scans, we
only target address space in networks that we know to be used for
dynamic address allocation, we set up a web page on the scanning
host that clearly explains the purpose of our study and we act imme-
diately on requests from operators to opt out of our measurements.

IRB Approval. In addition to following the best practices outlined
above, our study was reviewed by our institution’s ethics board
prior to the start of the study. We brought up two concerns in
our request to the IRB. First, even though the data we process is
publicly accessible and anyone can query it, the purpose of our
study and the way we perform targeted analysis raises obvious
privacy concerns. Given that our goal precisely is to demonstrate
these concerns — that dynamic updates to rDNS data raises privacy
issues — this is unsurprising. In order to mitigate this concern, we
store our analysis results in compliance with the EU’s General Data
Protection Regulation and delete data after the research concludes.
We note that while this removes the immediate privacy concern
of the analysis, in which we pinpoint individual users, the actual
privacy threat remains, since anyone can still query the data and
reproduce our results. To further mitigate this concern, we do not
disclose the names of organisations whose networks we selected
for further study, and we take care to report on users in aggregate
only. Finally, when zooming in on individual given names, we
deliberately pick a very common name.

Second, we sought express permission from our IRB for our sup-
plemental measurement, as this measurement further aggravates
the privacy risk by obtaining more timely information about the
presence of devices and users on targeted networks. The IRB ap-
proved the supplemental measurement, under the express condition
that we minimise the number of networks to which we apply this
measurement. We detail how we select a minimal set of networks to
cover with the supplemental measurement in Section 6.1. In the in-
terest of reproducibility, we retain the data from our supplemental
measurement in encrypted form on our institution’s servers.

Finally, we limit our analysis of specific use-cases (i.e., Life of
Brian) to a single name to minimize the possible privacy leak. These
analyses can be conducted on any name. However, exploring this
goes beyond the scope of our IRB approval.

An approval record from our institution’s ethics board is avail-
able under registration number RP 2021-202.
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10 CONCLUSION AND FUTUREWORK
In this paper, we performed a first of its kind study into the privacy
implications of combining DHCP exchanges with dynamic updates
to the global DNS. Our findings do not only substantiate existing
concerns that unique DHCP client identifiers can carry over to
the DNS, but also reveal that reverse records are based on privacy-
sensitive information such as client device owner names, and their
makes and models. This implies that individuals, and the presence
of devices likely belonging to such individuals, are at the risk of
being tracked. We analyzed the temporal relation between the
presence of rDNS records and the presence of client devices in a
network and showed that – for a selection of academic, enterprise
and ISP networks alike – records tend to linger for at most one
hour after clients leave the network. Via three case studies, we
demonstrate that virtually anyone on the Internet can infer and
track the presence of specific clients and observe network dynamics
via reverse DNS, even with other mechanisms to limit tracking
in place. Finally, we began a discussion about the finer details of
possible causes and identified ways to start mitigating this problem.

Future work. To aid mitigation efforts, there is dire need for
an investigation into how DHCP server and IPAM software carry
over privacy-sensitive client identifiers to the global DNS. This is
especially problematic if carry-over results from default settings
or settings not well understood by network operators. One could
investigate from which DHCP option the information is taken (e.g.,
Host Name or Client FQDN), if this goes against the intended use
of the option, and whether or not client-signalled desires for servers
not to update DNS records are followed. On the side of DHCP client
implementations, one could investigate which DHCP options are
filled with device names, whether or not this is necessary, and which
steps vendors can take to (partly) mitigate the problem. Identifying
exposing implementations and client devices could be done in a lab
or by using DHCP data collected inside networks.

In this paper we did not aim to exhaustively identify exposed net-
works with the highest possible accuracy. Rather, we took the first
steps towards studying the problem and used given name match-
ing as a starting point to drill down in PTR records. Future work
could go in the direction of investigating the full extent of the prob-
lem, by applying techniques from related work to find patterns
in hostnames. Another angle could be to consider forward DNS
data, which can also be dynamically updated by DHCP servers.
Future efforts, provided that they are ethically feasible, could also
focus on the potential for fine-grained geotemporal user tracking.
We used a posteriori knowledge on IP subnet allocations in one
case study, but related work has established that access network
topology can be inferred from hostnames [28]. We imagine that
combining such information with client presence inferences can
have far-reaching privacy implications. Finally, our findings sup-
port that DHCP release messages have an effect on the time rDNS
records linger. Future work could study the behavior of clients in
this respect: do clients that can send releases actually do so and is,
instead, not doing so a possible defense mechanism?
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