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ABSTRACT
Denial-of-Service attacks have rapidly increased in terms of fre-
quency and intensity, steadily becoming one of the biggest threats
to Internet stability and reliability. However, a rigorous compre-
hensive characterization of this phenomenon, and of countermea-
sures to mitigate the associated risks, faces many infrastructure
and analytic challenges. We make progress toward this goal, by
introducing and applying a new framework to enable a macroscopic
characterization of attacks, attack targets, and DDoS Protection
Services (DPSs). Our analysis leverages data from four indepen-
dent global Internet measurement infrastructures over the last two
years: backscatter traffic to a large network telescope; logs from
amplification honeypots; a DNS measurement platform covering
60% of the current namespace; and a DNS-based data set focusing
on DPS adoption. Our results reveal the massive scale of the DoS
problem, including an eye-opening statistic that one-third of all
/24 networks recently estimated to be active on the Internet have
suffered at least one DoS attack over the last two years. We also
discovered that often targets are simultaneously hit by different
types of attacks. In our data, Web servers were the most prominent
attack target; an average of 3% of the Web sites in .com, .net, and
.org were involved with attacks, daily. Finally, we shed light on
factors influencing migration to a DPS.
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1 INTRODUCTION
Denial-of-Service (DoS) attacks have rapidly increased in frequency
and intensity, with recent reports of attacks reaching 1Tbps [1].
The rise of the DoS-as-a-Service phenomenon (e.g., booters) [2],
has dramatically expanded the population of potential perpetrators,
who can now purchase the execution of attacks powerful enough
to saturate 1-10Gbps links. Events like the recent attack against
Dyn [3], or the DNS root server system [4], have demonstrated the
vulnerability of critical Internet infrastructure to DoS attacks.

The rise of DoS attacks has stimulated a new market for DDoS
Protection Services (DPSs), i.e., external services aiming at filtering
and dropping malicious traffic before it reaches the intended target.
Several authors of this paper have empirically shown an increasing
trend in the adoption of DPSs [5]. But a rigorous characterization
of the DoS phenomenon itself faces tremendous challenges, rooted
in the need for sustained operational infrastructure to capture in-
dicators of a variety of different types of DoS attacks, as well as
complex data fusion techniques that must integrate heterogeneous
raw data sources as well as meta-data to support classification and
correlation of attack events.

We offer a set of contributions toward this goal, by introducing
and applying a new framework to enable a macroscopic charac-
terization of attacks, attack targets, and mitigation behaviors. We
leverage four distinct data sets that cover a recent two-year period
(March 2015 - Feb 2017). We use two raw data sources that provide
signals of DoS attack events and complement each other: (1) the
UCSD Network Telescope [6], which captures evidence of DoS at-
tacks that involve randomly and uniformly spoofed IP addresses;
and (2) the AmpPot DDoS honeypots [7], which witness reflec-
tion and amplification DoS attacks – an attack type that involves
specifically spoofed IP addresses. Our data sets reveal more than
20M DoS attacks targeting about 2.2M /24 IPv4 network blocks,
which is more than one-third of those estimated to be active on the
Internet [8, 9]. Furthermore, we discover 137 k cases where both
randomly spoofed attacks and reflection and amplification attacks
were simultaneously launched against the same target.

We also find that most DoS attacks (e.g., about 69% for TCP-based
attacks) targeted Web servers, so we analyze this prominent class
of target in more detail using the OpenINTEL DNS measurement
platform. We find that two-thirds of all registered Web domains
that we observe were hosted on IP addresses targeted by attacks
during our two-year measurement period. On average, on a single
day, about 3% of all Web sites were involved in attacks (i.e., by being
hosted on targeted IP addresses). This includes attacks on several
large Web hosting companies.
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Finally, we study the extent to which such attacks forced Web
hosters to migrate to DDoS protection services. Based on OpenIN-
TEL data that specifically focuses on DPS providers [5], we discover
that 4.3% of the attack targets we observe migrate to a DPS follow-
ing an attack. To understand determining factors that motivate or
accelerate migration, we correlate attack duration, repetition and
intensity with migration events. While repetition and duration do
not significantly influence DPS migrations, we observe that intense
attacks significantly accelerate the migration process.

The remainder of this paper is organized as follows. Section 2
provides background on DoS attacks and DPSs. Section 3 describes
the four data sets we use. Sections 4, 5, and 6 analyze our com-
prehensive set of attack events, their impact on Web servers, and
the effect of attacks on migration to a DPS, respectively. Section 7
describes related work. Section 8 offers a set of future directions.
Section 9 concludes the paper.

2 BACKGROUND
2.1 Denial-of-Service Attacks
DoS is commonly achieved through resource exhaustion, either at
the server side (e.g., by sending more requests than it can handle)
or at the infrastructure level (e.g., by saturaring a network link).
Depending on how attack traffic is generated, DoS attacks can be dis-
tinguished into direct and reflection attacks. Direct attacks involve
traffic sent directly to the target from some infrastructure controlled
by the attackers, e.g., their own machines, a set of servers, or even a
botnet under their command. To conceal this infrastructure and to
impede countermeasures and attribution, these attacks oftentimes
employ random spoofing, i.e., faking the source IP addresses in at-
tack traffic. In contrast, in reflection attacks, third party servers are
involuntarily used to reflect attack traffic towards the victim. This
is possible as connection-less protocols have no means of checking
whether a request was sent legitimately or with a (specifically)
spoofed IP address. An attacker can thus simply spoof requests in
the name of the victim, causing the reflectors’ replies to be sent to
the victim. To make matters worse, many protocols that allow for
reflection also add amplification, causing the amount of reflected
traffic sent towards the victim to be many times greater than that
sent towards the reflector initially [10] – a problem affecting both
old protocols as NTP and IGMP [11, 12] as well as newer protocols
such as DNSSEC [13].

Since these attacks try to overwhelm a service by a sheer mass
of requests, they are referred to as volumetric attacks. Beyond that
there are also semantic attacks, which do not necessarily aim for
resource exhaustion but rather exploit flaws in the attacked services
themselves, e.g., by sending a malformed request that causes the
service to crash. However, this type of attack has to be tailored
specifically to work against a given service, whereas volumetric
attacks are service agnostic. In this paper we focus on volumetric
attacks.

2.2 DDoS Protection Services
DDoS Protection Services offer means for attack mitigation. They
may offer various types of mitigation solutions, which can rely on
in-line appliances, require network traffic diversion to the cloud
(i.e., the DPS infrastructure), or be a hybrid and do both. Volumetric

attacks are typically better dealt with in the cloud, whereas semantic
attacks can be mitigated in-line [14, 15]. In this paper, we focus
on protection where network traffic diversion is required (i.e., all
but strictly in-line solutions). Diversion is usually implemented
through the DNS or through the Border Gateway Protocol (BGP).

The DNS can be leveraged for network traffic diversion in a
manner similar to how content delivery networks implement load
balancing [16]. It is common for DPS providers to combine this ap-
proach with a reverse proxy that sits between potentially malicious
requests and protected Web sites, so that only benign requests are
forwarded to the customer’s Web server. Alternatively, the DPS
can announce a customer-used BGP prefix (e.g., a /24) to divert all
customer-destined traffic to the DPS. Traffic is then scrubbed by
the DPS before being sent back to the customer’s network by using,
e.g., a Generic Routing Encapsulation (GRE) tunnel.

The type of customer and the type of attack determine the po-
tential use of either DNS or BGP. While a hoster with a significant
number of Web sites and machines may require BGP-based protec-
tion of their entire infrastructure, a DPS customer who needs only
to divert traffic destined to a single host (or even a single Web site
hosted on a shared server) can do so by relying on the DNS. Our
methodology identifies both types of network traffic diversion.

3 DATA SETS
In this paper, we analyze and correlate four data sets, all of which
cover a two-year period, from March 1, 2015 to February 28, 2017.
The first two data sets contain DoS attack events with different
characteristics. Specifically, one contains attack events inferred
from backscatter to a large network telescope (Section 3.1.1). The
other contains events logged in globally placed amplification hon-
eypots (Section 3.1.2). The third data set is derived by a large-scale,
active DNS measurement that provides, among other information,
mapping of domain names to IP addresses (Section 3.2). The fourth
and final data set tracks which Web sites outsource protection to a
DPS (Section 3.3).

3.1 DoS Attack Events
3.1.1 Randomly Spoofed Attacks. The first data set contains at-

tack events inferred from backscatter packets reaching the UCSD
Network Telescope [6], a largely-unused /8 network operated by
the University of California San Diego. Network telescopes, also
called darknets, passively collect unsolicited traffic – resulting from
scans, misconfigurations, bugs, and backscatter from denial-of-
service attacks, etc. – sent to routed regions of the address space
that do not contain any hosts. The UCSD Network Telescope covers
approximately 1/256 of the IPv4 address space. Any sizable attack,
i.e., one that involves many randomly and uniformly spoofed IP
addresses, should therefore be visible on this darknet.

To identify randomly spoofed denial-of-service attacks in the
data collected at the telescope, we implemented the detection and
classification methodology described by Moore et al. [17] as a
Corsaro [18] plugin that we have also released publicly as open
source [19]. Our plugin uses the same three-step processes de-
scribed by Moore et al.: first, we identify and extract backscatter
packets, then we combine related packets into attack “flows” based
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start end #days source #events #targets #/24s #/16s #ASNs

2015-03-01 2017-02-28 731
Network Telescope 12.47M 2.45M 0.77M 31057 25990

Amplification Honeypot 8.43M 4.18M 1.72M 41678 24432
Combined 20.90M 6.34M 2.19M 43041 32580

Table 1: DoS attack events data.We consider two years of data from the UCSDNetwork Telescope and from aDoS amplification
honeypot to inferDoS attack events. Over the two yearswe observemore than 20million events targeted atmore than 2million
/24 network blocks.

on the victim IP address, and finally we perform attack classification
and filtering.

Specifically, we classify a packet as backscatter if it is a response
packet, i.e., TCP SYN/ACK, TCP RST, ICMP Echo Reply, ICMP Des-
tination Unreachable, ICMP Source Quench, ICMP Redirect, ICMP
Time Exceeded, ICMP Parameter Problem, ICMP Timestamp Reply,
ICMP Information Reply, or ICMP Address Mask Reply. We then
aggregate such packets into flows based on the victim IP address
(i.e., the source IP address of the backscatter packets), and we expire
flows using the same conservative 300 second timeout described
by Moore et al. In the final attack classification and filtering step,
we compute statistics about the number of unique spoofed source
IP addresses, the number of different ports used, and four metrics
of estimated attack intensity: the overall number of packets and
bytes, the attack duration, and the maximum packet rate per second
(in any given minute). We use the same conservative thresholds
described by Moore et al. to filter low-intensity attacks, discarding
those with: (i) fewer than 25 packets, (ii) a duration shorter than
60 seconds, and (iii) a maximum packet rate lower than 0.5 pps.1
While the maximum packet-rate can be used as an indicator of
the attack intensity, this statistic also reflects the capability of the
victim to endure the attack. That is, a high-intensity attack to a well-
provisioned victim will likely result in a higher observed maximum
packet rate than the same attack directed at a poorly-provisioned
victim.

3.1.2 Reflection and Amplification Attacks. The second data set
contains events logged by AmpPot [7]. This honeypot aims to track
reflection and amplification DoS attacks by mimicking reflectors.
To be appealing to attackers, AmpPot emulates several protocols
known to be abused.2 This way, AmpPot can be found by attackers
scanning for reflectors and be “abused” in subsequent DoS attacks.

During an attack, an attacker sends spoofed requests allegedly
coming from the victim to AmpPot. In order not to cause harm
in actual attacks, AmpPot only replies to sources sending fewer
than three packets per minute. However, recording these requests
allows us to infer various information about the attack, including
the IP address of the victim, the start and end of the attack, but also
the request rate, which can be used as a measure of intensity. To
distinguish attacks from other traffic (e.g., scans for reflectors), we
only consider events exceeding 100 requests.

An initial set of eight honeypots was installed in November
2014. The set has since been expanded to 24 honeypots. To prevent
skew in the dataset by either country or autonomous system, the

1A packet rate of 0.5 pps to the telescope corresponds to an estimated packet rate
of 128 packets per second to the victim (the number should be multiplied by 256).

2The protocols QOTD, CharGen, DNS, NTP, SSDP, MSSQL, RIPv1, and TFTP.

honeypots are distributed both geographically3, as well as logi-
cally, among various cloud providers and machines operated by
volunteers. It has been shown that by making the honeypots attrac-
tive to attackers (in terms of the the amplification that attackers
can achieve), 24 honeypot instances are sufficient to catch most
reflection and amplification DoS attacks on the Internet [7].

3.1.3 Attack Coverage and Target Metadata. Many types of DoS
attacks involve spoofed IP addresses. Any sizable DoS attack that
involves randomly and uniformly spoofed IP addresses should be
visible on the UCSD Network Telescope. Moreover, 24 honeypot
instances catch most reflection and amplification attacks, which
involve specifically spoofed IP addresses (i.e., that of the victim).
Our data sets of attack events therefore complement each other in
terms of the DoS attack types that they register.4

Table 1 summarizes both data sets. The telescope data set has
12.47 M randomly spoofed attack events, involving 2.45M unique
targets (i.e., unique IP addresses). The honeypots data set has 8.43M
reflection attacks, targeting 4.18M unique targets. We defer a fur-
ther discussion of these data sets until Section 4. Both data sets of
attack events contain target IP addresses to which we add metadata
on geolocation using NetAcuity Edge Premium Edition data [20]. We
also add metadata on BGP routing by using Routeviews Prefix-to-AS
mappings data [21].

3.2 Active DNS measurements
The telescope and honeypots data sets contain per attack event the
IP address of the attacked target. To evaluate the potential effect
of attacks on the Web we need a historical mapping between Web
sites and the IP addresses on which they were hosted. To obtain
this mapping, we rely on the large scale, active DNS measurement
performed by the OpenINTEL platform5 [22]. The OpenINTEL plat-
form collects daily snapshots of the content of the DNS by struc-
turally querying all the domain names in a full zone, i.e., Top-Level
Domain (TLD), for their Resource Records (RRs). The measurement
data includes IP address mappings, i.e., A records. In this study we
identify the Web sites that are potentially affected by attacks by
looking for A records on www labels that, at the time of an attack,
resolved to the attacked IP addresses.6

We use a subset of the TLDs that OpenINTEL measures. Table 2
shows the details of this data set. We use data for the three generic
TLDs (gTLDs) .com, .net, and .org. For each of the three gTLDs,

311 honeypots are located in America, 8 in Europe, 4 in Asia and 1 in Australia.
4Attacks in which network traffic is sent to victims directly (e.g., by botnets that

do not spoof source IP addresses) are not covered by the two data sets that we use.
5https://openintel.nl/
6The presence of a www label in the DNS is taken as an indicator that Web content

was present (or intended) at the time of an attack. We did not probe for Web content.

https://openintel.nl/
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we show the total number of Web sites over the two-year period.
For example, for .com (the largest TLD), a total of 173.7 millionWeb
sites were seen. The data points column shows the total number
of collected data points, examples of which are CNAME and A RRs.
The total number of data points is 1.258 trillion. The size column
shows the size of the compressed measurement data using Apache
Parquet columnar storage [23], with a total of 28.4 TiB. The three
gTLDs cover roughly 50% of the global domain namespace [24].
On the last day of the studied, two-year period the three gTLDs
account for 153 million active www domain names.

start #days source #Web sites #data points size

2015-03 731

.com 173.7M 1045.9 G 23.5 TiB

.net 21.6M 121.0 G 2.8 TiB

.org 14.7M 90.7 G 2.1 TiB
Combined 210.0M 1257.6 G 28.4 TiB

Table 2: Active DNS data set. We use two years of DNS data
collected by the OpenINTEL platform to inferWeb sites and
associated IP addresses for the .com, .net, and .org gTLDs.
In this data set we find 210M domains that we classify as
Web sites (i.e., those with a www label).

3.3 DDoS Protection Services
We are interested in understanding if DoS attacks prompt Web sites
to oursource protection to a DPS. Our data set on DPS providers
contains usage information for all Web sites in the three previ-
ously mentioned gTLDs. We created this data set by using the
methodology that we previously published in [5]. This methodol-
ogy relies (also) on OpenINTEL data. The created data set covers
the use of ten DPS providers. Nine out of ten are leading commer-
cial providers [25]. Specifically, these are Akamai, CenturyLink,
CloudFlare, DOSarrest, F5 Networks, Incapsula, Level3, Neustar,
and Verisign (as in [5]). The tenth is an extension; we added Virtu-
alRoad, a non-commercial provider that protects Web sites run by
journalists, activists, and human right workers. By adding Virtual-
Road we include in our analysis also attack targets that would not
normally outsource protection to commercial DPS. Table 3 shows
the details of the data set in terms of the total number of Web sites
that we associate with each of the ten providers, over the two-year
period. In Section 6, by correlating the DPS use data set with the
DoS attack events and the active DNS measurements data sets, we
study if (and when)Web sites start outsourcing protection following
an attack.

4 ANALYSIS OF ATTACK EVENTS

A third of the Internet is under attack. Together, our data sets
of attack events account for 20.90M attacks, targeting 6.34Munique
IP addresses, over a two-year period (Table 1). We observe a total
of 2.19M unique /24 network blocks that host at least one target,
which is about a third of the ∼6.5M /24 blocks recently estimated
to be active on the Internet [8, 9]. For repeated attacks against the
same IP address, we see fewer events per target IP in the honeypots
data than in the telescope data, which we attribute to more follow-
up in randomly spoofed attacks. Combined numbers for both data

provider #Web sites
Akamai 5.86M

CenturyLink 0.87M
CloudFlare 4.27M
DOSarrest 7.04M

F5 3.58M
Incapsula 3.78M
Level 3 0.47M
Neustar 10.78M
Verisign 4.34M

VirtualRoad < 100
Table 3: DDoS Protection Service use. For each of the 10 DPS
providers that we consider, we identify the Web sites they
provide protection services for by using the DNS data from
OpenINTEL.

sets also show overlap in targets, which we investigate further in
this section.

Around 30 k DoS attacks a day are visible. Figure 1 shows sta-
tistics over time for the two years’ worth of attack events. The top
graph shows randomly spoofed attacks, i.e., those in the telescope
data set. The attacks curve shows the number of events seen on
each day, which averages out to about 17.1 k daily. The unique tar-
gets curve is noticeably lower than the attacks curve, in each day,
highlighting that some targets are hit more than once on the same
day by randomly spoofed attacks.

The middle graph of Figure 1 shows statistics over time for attack
events in the honeypots data set. The average number of attacks is
about 11.6 k daily. In this case, the unique targets and attacks curves
are not as far apart as for randomly spoofed attacks, reflecting a
lower average number of events per target IP address.

Finally, the bottom graph in the same figure shows the combi-
nation of attack events from both data sets. In total, we observe
an average of 28.7 k attacks per day. The curve of unique targets is
not the sum of the unique targets seen in each data set individually.
This is because some targets are hit by both randomly spoofed and
reflection DoS attacks on the same day, which we investigate in
more depth at the end of this section.

The combined events as well as the individual time series reveal
spikes and plateaus in terms of the number of attack events. We
evaluate outliers in Section 5, where we study the potential effect of
(intense) attack events on theWeb. A takeaway from these results is
that each day we see attacks on tens of thousands of unique target
IP addresses, spread over thousands of autonomous systems, as
shown by the targeted ASNs curves.

By-country target ranking follows Internet space usage pat-
terns,with somenotable exceptions.We rank themost-commonly
targeted countries, based on the geolocation metadata of target IP
addresses. Table 4a shows that more than one fourth of randomly
spoofed attack targets geolocate to the United States, with 25.56%
(or 625 k) of all unique IP addresses. China follows second, with
10.47% of targets. These two countries also rank first and second
for reflection attacks in Table 4b, respectively with 29.5% and 9.96%
of 4.18M unique target IP addresses. In general, we find that the
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Figure 1: The number of attacks over time (black lines), and
the number of IP addresses (grey lines), /16 network blocks
(blue lines), and ASNs (orange lines) targeted over time for:
randomly-spoofed DoS attacks observed in the telescope
data set (top graph), attack events in the honeypots data set
(middle graph), and the union of these two data sets (bottom
graph). Note that the combined data is not simply the sum
of the top two graphs: in some cases we observe targets at-
tacked by both randomly-spoofed, and reflectedDoS attacks,
on the same day.

two rankings are largely consistent and mostly reflect available
statistics of Internet address space utilization (e.g., routed space or
estimated used space [26]). However, there are some notable excep-
tions. While in recent estimates Japan ranks third (6.22% and 6.33%
of space announced on BGP or inferred as actively used, respec-
tively [27]), in the telescope and honeypots data sets it ranks 25th
and 14th, respectively. Russia and France, are instead examples of
countries that in these attack datasets rank higher than in estimates
of Internet space usage. In the case of France, we found out that
this shift is mostly due to attacks to OVH, a large hoster that was
heavily attacked in 2016 [1].

TCP is the preferred protocol in randomly spoofed attacks.
The distribution of IP protocols in the attack events in the telescope
data set provides an overview of the flooding approach used. Ta-
ble 5 shows that the majority of these attacks involve TCP (79.4%),
while UDP and ICMP follow at 15.9% and 4.5%, respectively. ICMP
in this distribution denotes ICMP attack traffic (e.g., a ping flood,
which leads to echo reply backscatter). In case an ICMP unreach-
able message reaches the telescope, we register the protocol of the
quoted packet, e.g., UDP for a UDP packet that could not reach its
destination. Other protocols (e.g., IGMP) account for 0.2% of attack
events.

country #targets %
US 625 k 25.56%

China 256 k 10.47%
Russia 140 k 5.72%
France 126 k 5.14%

Germany 103 k 4.20%
Other 1200 k 48.91%

(a) Telescope

country #targets %
US 1232 k 29.50%

China 416 k 9.96%
France 323 k 7.73%
GB 266 k 6.37%

Germany 216 k 5.18%
Other 1727 k 41.26%

(b) Honeypot

Table 4: The targeted IP addresses and percentage of all ob-
served attacks per-country (based on the NetAcuity Edge IP
geolocation database). While this ranking mostly follows
Internet space usage patterns, we find some notable excep-
tions, e.g., while Japan ranks 3rd in recent address space us-
age estimates, it ranks 25th and 14th in the telescope and
honeypots data respectively. On the other hand, Russia and
France rank higher in terms of attacks compared to address
space usage.

IP protocol TCP UDP ICMP Other
events (%) 79.4% 15.9% 4.5% 0.2%

Table 5: IP protocol distribution. The percentage of all at-
tacks per IP protocol as observed in the telescope data.

type #events %
NTP 3.38M 40.08%
DNS 2.21M 26.17%

CharGen 1.89M 22.37%
SSDP 0.71M 8.38%
RIPv1 0.23M 2.27%
Other 0.01M 0.73%

Table 6: Reflection protocol distribution. Number of attacks
(and percentage of all attacks) per reflection protocol as ob-
served in the honeypots data.

NTP is the preferred reflector protocol in reflection and am-
plification attacks.The honeypots data set does not suggest which
specific service was targeted by reflection attacks. Instead, we ob-
serve which amplification vector (i.e., reflector protocol) was used
by the attacker. Table 6 shows a distribution of the protocols chosen
by attackers. NTP leads with 3.38M attack events, accounting for
40.08% of the 8.43M reflection attacks seen over two years (Table 1).
The second and third placed, DNS and CharGen, account for 26.17%
and 22.37%, respectively. Examples of protocols following SSDP and
RIPv1 in terms of occurrence are MS SQL and TFTP.

NTP is also the most-used protocol for reflection according to
various vendor reports. While we find similarities between our re-
sults and vendor reports, we also find differences. As vendor reports
are based on customer-specific data and oftentimes do not state the
scientific method used, we do not delve into these similarities and
differences further.
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Figure 2: Duration of attacks. The distributions of duration
in the telescope (top graph) and honeypots (bottom graph)
data sets.

Randomly spoofed attacks tend to last longer. 10% last more
than an hour and a half. Each target is attacked a certain amount
of time. Attacks typically last minutes up to hours. Figure 2 shows
the distributions of the attack duration in our data sets. The top and
bottom graphs refer to randomly spoofed and reflection attacks,
respectively. About 40% of randomly spoofed attacks last five min-
utes or shorter. Attacks in the telescope data set last at least one
minute due to the minimum duration threshold that we outlined in
Section 3.1.1. We find that roughly the top 10% of randomly spoofed
attacks last 1.5 hours or longer. While attacks in the telescope data
set can last longer than a day, these cases are rather scarce (∼0.2%).
The mean duration is 48 minutes and the median is 454 seconds.

For attack events in the honeypots data set we find that 50% of
attacks last 255 seconds or shorter. The top 10% of attacks last 40
minutes or longer, and roughly 6% of attacks last an hour or longer.
The mean attack duration is 18 minutes and the median duration is
255 seconds. We note that because of how the honeypots operate,
they cap attack event durations at 24 hours. As only ∼0.02% of
attacks last 24 hours we don’t expect this cap to significantly affect
the results.

More than a thousand attacks of medium to maximum in-
tensity occur on a daily basis. The attack data sets contain inten-
sity attributes, which we use to analyze the strength of attacks. For
randomly spoofed attacks we see the maximum number of packets
per second reaching the telescope during the attack. This rate can
range from tens to tens of millions of packets per second. To infer
an estimate of the packet rate reaching the victim, assuming the
attack is using uniformly random spoofing, the rate should still be
multiplied by 256 (Section 3.1.1). For reflection attacks we observe
the average number of requests made to the reflector per second.
This number can range from below one to hundreds of thousands.
The reason for the comparative difference in the higher ranges is
because reflection attacks are amplified, and need fewer packets to
reach large traffic volumes.

We use these attributes to estimate the intensity distributions
over attacks. Figure 3 shows the results for attack events in the

telescope data set. A steep curve shows that about 70% of attacks
generate only about two backscatter packets per second (max)
reaching the telescope, which translates to an estimated attack
rate of 512 packets per second to the victim. For about 17% of the
attacks, the telescope observes more than 10 packets per second
(an estimated attack rate of 2560 packets per second to the victim).
The mean and median values are 107 and 1, respectively.
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Figure 3: The intensity distribution for attack events in the
telescope data set. The number of packets per second (max)
should be multiplied by 256 to estimate the the packet rate
reaching the victim.

As a honeypot is part of a larger group of amplifiers used during
an attack, the attack intensity depends on the total number of
amplifiers involved. While it is unclear how many other amplifiers
are involved in each attack, our best guess is that the total number of
amplifiers will not vary significantly among attacks using the same
amplification vector. Therefore, in Figure 4 we show the intensity
distribution separately per protocol for the honeypots data set.
We show the overall distribution for all attack events, as well as
separate curves for the top five used reflector protocols.7 For most
protocols, about 70-90% of attacks see a gradual increase in the
number of requests per second, starting as low as below one on
average, to a couple thousand. The number of requests involved
clearly varies per protocol. Taking NTP as an example, roughly the
first 90% of attacks see up to 2000 packets per second, whereas the
top intensities involve tens to hundreds of thousands of packets
per second. These distributions are also different compared to the
telescope data, which we attribute to the different nature of attack
events. The overall mean and median values are 413 and 77 requests
per second, respectively.
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Figure 4: The intensity distribution for attack events in the
honeypots data set.We show the distribution for the top five
reflector protocols used, as well as the overall distribution.

7Note that these five reflector types are involved in all but 10 k attack events, as
shown in Table 6.
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Figure 5: High-intensity attack events over time. The num-
ber of attacks with a medium or higher intensity, per day,
for the telescope and honeypots data sets combined.

type #events %
single-port 7.56M 60.6%
multi-port 4.91M 39.4%

Table 7: Number of target ports distribution. Number of at-
tacks (and percentage of all attacks) per target port cardinal-
ity in the telescope data.

Figure 5 shows attack events that have a medium intensity or
higher, over time, for both data sets combined. We consider an
attack event to be of medium intensity or higher if its intensity is
at least the mean of all intensities in the corresponding data set. On
average, daily, we observe 1.4 k attacks within this intensity range,
compared to the overall average of 28.7 k attacks per day (Figure 1).
We study one of the peaks visible in the curve in Section 5.

Web, gaming, andMySQL ports are themost attacked in ran-
domly spoofed attacks. Randomly spoofed traffic sent to flood
a victim can target one or multiple ports. One reason to target a
single port is because the attacker wants to take down a specific
networked daemon. Another reason is because the port is known
(or assumed) not to be filtered by a firewall. Table 7 shows, for
the 12.47 M attack events of this type, the number of events that
targeted strictly one port (60.6%), as well as those that involved
multiple ports (39.4%).8

We map the ports of attacks that target only a single port to
applications, i.e., services, on the basis of both IANA port assign-
ments, as well as commonly used port numbers. Table 8 shows the
results of this mapping for TCP and UDP. We show in Figure 8 per
protocol the top five potentially targeted services, along with their
share of the distribution within that respective protocol.9

Table 8a shows the results for TCP. HTTP ranks first with 2.83M
attack events, which account for 48.68% of 5.81M single target
port attacks on TCP. HTTPS ranks second with 20.68%. The third
place goes to MySQL (3306/TCP), with a share of 1.12%, which is
significantly lower than HTTP(S). For UDP, in Table 8b, the most-
attacked port is associated with various on-line multiplayer games

8For the honeypots data we do not make a port number distinction, because we
do not keep track of the typically ephemeral target port in the reflected packet.

9We say “potentially” because we do not know if the service was listening at the
time of the attack. Moreover, port might have been chosen by an attacker merely to
penetrate a firewall to perform a service agnostic attack.

type #events %
HTTP 2.83M 48.68%
HTTPS 1.20M 20.68%
MySQL 0.06M 1.12%
DNS 0.06M 1.07%

VPN PPTP 0.06M 0.99%
Other 1.60M 27.46%

(a) TCP

type #events %
27015 225.4 k 18.54%
37547 24.8 k 2.04%
32124 17.1 k 1.41%
28183 16.9 k 1.39%
MySQL 15.8 k 1.30%
Other 916 k 75.32%

(b) UDP

Table 8: The distribution of target ports in the telescope
data set. We show the top five potentially targeted services
– based on IANA port assignments – for randomly spoofed
attacks to a single port using TCP (left) and UDP (right).

and the Steam platform.10 About 75% of the UDP attack events
target ports that do not rank among the top five, which is because
these attacks are spread out over the roughly 65 k remaining ports.11

There are two important takeaways from these results. First,
while attacks associated with on-line gaming are most apparent for
UDP, most other attack events for UDP are spread out over the full
port range. Second, more than two thirds of all attack events over
TCP potentially target Web infrastructure (69.36%).

Randomly spoofed attacks against Web ports are more in-
tense. Given the prominent presence of Web ports (i.e., 80 & 443)
in the telescope data set we evaluate the mean and median intensity
of attacks that potentially target Web ports. We find that the mean
(maximum per attack) rate observed at the telescope is 226 packets
per second – corresponding to an estimate of almost 60 k packets
per second. This is a change upward from 107 for all randomly
spoofed attacks (the median remains the same). We also compared
the duration statistics with their overall counterparts and find that
the mean drops to 10 minutes (down from 48) and the median drops
to 240 seconds (down from 454). We thus find that attack events that
involve Web ports are more intense than the overall, while lasting
shorter. These attacks might have an adverse effect on Web sites
(Section 5) and trigger outsourcing protection to a DPS (Section 6).

Randomly spoofed and reflection and amplification attacks
are sometimes used jointly against the same target. Finally,
we study cases in which targeted IP addresses show up in both
the telescope and the honeypots data sets. That is, the targets are
hit by randomly spoofed attacks as well as reflection attacks over
time. The telescope and honeypots data sets have 282 k unique
target IP addresses in common (Table 1). Out of 282 k targets, 137 k
were hit simultaneously by joint attacks, i.e., attacks that overlap
in time. An example of a joint attack is a SYN flood combined with
an NTP reflection attack. The vast majority (77.1%) of randomly
spoofed attacks co-participating in attacking a victim involve a
single port in the telescope data set: we see an increase from 60.6%
(Table 7), suggesting that joint attacks are more likely to target a
specific service. The target port distribution of randomly spoofed
attacks jointly involved with reflection attacks has more attacks to
27015/UDP (53% up from 18.54%), which suggests that joint attacks

10http://steampowered.com/
11A few examples of services over UDP that follow the fifth placed MySQL are

NTP (123/UDP) and NetBIOS (138/UDP).
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might be used to gain an edge in on-line gaming. For TCP, an
increase in HTTP from 48.68% to 50.23% is seen. While the latter is
a subtle change, it could indicate that serious attackers, i.e., those
who launch both randomly spoofed and reflection attacks, target
Web services more often.

The distribution of IP protocols in randomly spoofed joint attacks
is similar to that of all randomly spoofed attacks and shifts only by
tens of percents. For reflection attacks co-participating in attacking
a victim, we find that CharGen’s use drops by half, to 11.5%, while
the other four protocols in the top five gain. NTP gains most with
an increase to 47.0%.

The autonomous system most-commonly targeted by joint at-
tacks is AS12276 (OVH ), with 12.3% of 137 k unique joint attack
targets. China Telecom is placed second with 5.4%. China Unicom’s
AS4837 is third (3.1%). When considering joint attacks, the per-
country distribution does not differ significantly from those for
single attacks.

The first-most and second-most countries to which joint targets
geolocate are the US and China, with 24.4% and 20.4%, respectively.
France comes third (9.5%) and Germany fourth (6.5%). These four
countries are also in both top fives in Table 4a and Table 4b, and in
the same order. Russia, which was not in the top five for reflection
attacks, is fifth placed for joint attacks (4.1%).

5 THE EFFECT OF ATTACKS ON THE WEB
In this section we evaluate the potential effect of attack events on
the Web. We consider the subset of attack events that target IP
addresses for which we can determine Web site associations, using
the active DNS measurement data set described in Section 3.

While analyzing Web site associations we may find that multi-
ple Web sites share an attacked IP address. As a consequence, an
attack on a single IP can potentially affect millions of Web sites
simultaneously. These cases occur when an IP address is used by
a larger party, such as a hoster. In case of multiple associations, a
single Web site as well as the hoster as a whole may have been the
intended target of the attack. Regardless, all Web sites that share
that IP address can potentially be affected. We identify large parties
by looking at routing information for the attacked IP address, by
looking at a common name server in the NS record, or a common
CNAME through which Web sites expand to the shared IP address. To
elaborate the last point: in some cases a CNAME record in the DNS
can reveal more about a Web site than the Web site’s IP address.
For example, some hosters rely on Amazon AWS, which means that
IP routing information points to Amazon and not to the hoster. A
customer-specific CNAME that all Web sites share might still reveal
the hoster.

Many target IP addresses belong to large hosters, with each
mapping up to millions of Web sites. We find Web site asso-
ciations on 572 k of the 6.34M unique target IP addresses in the
attack events. This means that of uniquely targeted IP addresses, at
least 9% host one or more Web sites. Figure 6 shows the number
of Web sites affected by attack events. Each bar, i.e., bin, repre-
sents a “co-hosting” group, which indicates how many Web sites
were associated with a targeted IP address at the time of an attack.
The magnitude of each group is the number of target IP addresses
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Figure 6: Web site associations with IP addresses targeted
by attacks. Each bar indicates the number of unique target
IP addresses (y axis) associated with a number of Web sites
within a given bin (x axis).

within the group.12 More than a third of these IP addresses (∼211 k)
were associated with a single Web site at the time of an attack,
whereas, at the other end of the distribution, 169 targets hosted 1M
to 3.6M Web sites potentially affected by the attack event (3.6M is
the maximum in the right-most group in the graph).13

The active DNS data set used in this work covers only com,
net, and org Web sites. Our estimate of Web sites per target IP
is therefore a lower bound. An IP address in the n=1 “co-hosting”
group might be associated with a Web site in another TLD (e.g.,
www.example.tk). This would knock the target IP out of the group
in question, and thus affect the distribution. To analyze this effect
we considered com, net, and org individually. The shape of Figure 6
is similar for the three individual distributions, which suggests that
the distribution among “co-hosting” groups would not drastically
change even if we considered more TLDs.

Isolating Web targets reveals an even more pronounced ma-
jority of TCP-based randomly spoofed attacks andNTP-based
reflection attacks. Randomly spoofed attacks against IP addresses
that host Web sites primarily make use of TCP. Specifically, 93.4%
of attack events, up from 79.4% for all attacks (Section 4). Moreover,
attacks on targets that host Web sites mostly also target Web in-
frastructure ports: 87.60%, up from 69.36% for all attacks. We find
that NTP is the most commonly used reflector type on such targets:
54.69%, up from 40.08%.

Over two years, 64% of inferred (.com, .net, .org) Web sites
were hosted on IP addresses targeted by attacks. On average,
3% of Web sites were involved daily. Figure 7 shows, for every
day in our two-year observation period, the total number of Web
sites associated with attacked target IP adresses on that day. The
top graph is for all attack events, and the bottom one is for attack
events with a medium to high intensity. In each graph, the grey
curve shows the number of Web sites (potentially) affected, in
millions, whereas the black curve shows the (smoothed) percentage

12Each IP address can contribute once to a “co-hosting” group in this visualization.
13This maximum is found on a target IP that is routed by DOSarrest, one of the

DPS providers considered in this work. Google and Amazon are other examples with
(various) IP addresses in this group.
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Figure 7: Web site associations with attacked targets over
time. The number of Web sites on attacked IP addresses for
all attacks (top graph) andmedium to high intensity attacks
(bottom graph). The left y axis shows the number of Web
sites and the right y axis shows the percentage of all Web
sites in the measured namespace.

that the involvedWeb sites make up of all Web sites in the measured
namespace (right y axis).14

We link almost 134M unique Web sites to all attack events ob-
served over the two-year period. The average number of Web sites
is just under 4M per day, which translates to about 3% of all Web
sites in the measured namespace.15 For attacks of medium intensity
of higher, the average is 1.7 M daily (1.3%).16 The fraction of Web
sites that are potentially affected daily is considerable, which does
not come as a surprise given the large number of ASNs and /24
prefixes that we see attacked daily (Section 4).

Investigating attacks to large hosters. In the number of affected
Web sites, various peaks are discernible, the largest of which in-
volves 11.82% of all Web sites. We evaluate this peak, along with
three others, as examples of the potential effect of attacks on the
Web.

The first peak (cf. 1○ in Figure 7) on March 12, 2015 involves
attacks that associate with a little over 15 millionWeb sites, which is
11.82% of all Web sites. We identified several third-parties that offer
hosting as large targets on this day. A significant number of Web
sites are hosted by GoDaddy, through a set of about twenty targeted
IP addresses, all routed to their AS. A large part is associated with
WordPress, primarily through two consecutive IP addresses that
belong to Automaticc Inc., the company behind WordPress. Another
IP address routes to the security infrastructure of CenturyLink, one
of the DPS providers considered in this work, which shows that
the attack was probably mitigated. Many of the target addresses
appear as joint attacks in the honeypot and the telescope data sets,
with low to medium intensities.

The second peak (cf. 2○) on October 10, 2015, involves 11.7 mil-
lionWeb sites. Among the targets we find several large hosters such

14For smoothing we interpolate a cubic spline between the median number of
affected Web sites per month.

15Multi-day attacks, i.e., those that cross day boundaries, count only towards the
day on which the attack was started.

16Recall from Section 4 that an attack is considered to be of medium intensity if its
intensity is the mean of all intensities in its attack events data set.

as Squarespace and OVH. Another prominent target is a domain
names reseller that is hosted in Amazon AWS.17 The third peak
we investigate, occurs on November 4, 2016 (cf. 3○). It involves a
little over 13M Web sites. About 10M of these Web sites are hit
by an attack of high intensity, as can be seen in the bottom graph.
This number is largely made up by GoDaddy-hosted Web sites.
A significant number is also associated withWix.com, a Web site
development platform.18 Squarespace is among the targets. The
final example (cf. 4○) is for February 25, 2017. This peak involves
14.1 million Web sites, hosted by various companies, such as Go-
Daddy, OVH, Network Solutions, and a variety of hosting companies
that are subsidiaries of the Endurance International Group (EIG).

Overall, the three most frequently attacked larger parties that
we identify over the two-year period are, in order, GoDaddy, Google
Cloud, andWix. Other names include Squarespace, Gandi, and OVH.

While our focus in this section is on attacks that affect Web sites,
during our analysis we encountered several IP addresses that can
be linked to the mail infrastructure of a large number of domain
names. It is not www labels that map to these IP addresses, but rather
the mail exchanger records (MX) of domain names. For example,
we find that GoDaddy’s e-mail servers, which are used by tens of
millions of domain names, are frequently targeted by DoS attacks.
In future work, we plan to investigate the impact of DoS attacks on
mail infrastructure and for this purpose we recently instrumented
our measurement infrastructure to query for more DNS RRs on the
names found in MX records.

6 ATTACK EFFECTS ON DPS MIGRATION
In this section we study whether attacks on Web sites have an
effect on migration to a protection service, and to which extent.
Web site owners who maintain their own hosting, as well as hosting
companies that provide hosting infrastructure on a larger scale, may
start outsourcing protection to a DPS after being targeted by a DoS
attack. Our data set on DPSs allows us to identify, for all the Web
sites we infer in com, net, and org, the day of migration to any of
the ten providers we consider in this work (within the two year
period of analysis). By combining this information with our data
sets of attack events, we analyze if, and when, Web sites migrated
to a DPS, following one or more attacks.

We define a classification taxonomy for Web sites according to
the tree in Figure 8. The root of the tree represents the overall
set of domains (over our two year observation period) that we
infer to be Web sites (210M). We then split this set into two: those
for which we observed attacks (134M), and those for which we
did not (76M). We find that the majority of Web sites (64%) were
observed to be on attacked IP addresses over the course of two
years. Then, for both of these categories (attack observed and
no attack observed), we identify those Web sites that either
already use a DPS (preexisting customers) – either from the
beginning of our data set, or the first time they are found in the DNS
– and those that do not (non-preexisting customers). We find a
much higher percentage of preexisting customers in domains
for which we observed attacks (24.9M, 18.6%) than for those where

17This company has its own AWS CNAME, which allowed us to identify it even
though the IP belongs to AWS.

18Wix hosts in AWS, but uses Incapsula for DDoS mitigation, which is something
we previously outlined in [5].
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Figure 8: Web site taxonomy. Nodes are annotated with the
estimated number of web sites in each category (and the per-
centage of the parent category population). The root of the
tree represents the overall set of domains (over the two years
we study) that we infer to be Web sites (i.e., those with a www
label).Wefind that of these 210MWeb sites, 64%were hosted
on attacked IP addresses (at the time of an attack) at least
once during our two year observation period.

we did not observe attacks (0.67 M, 0.89%), suggesting that Web
sites we observe to be attacked during our two year observation
period may have been previously attacked. Finally, the bottom level
of the tree identifies those Web sites that were non-preexisting
customers, but either did migrate (migrating) or did not migrate
(non-migrating) to using a DPS. In the case of attack observed
Web sites, we consider a Web site to be migrating if it is found in
the DPS data set after we observed it being under attack. For no
attack observedWeb sites, we consider it to be migrating if it is
found in the DPS data set after it is first seen in the DNS. While we
do find a slightly higher percentage of Web sites migrate after an
attack (4.7 M, 4.31%) compared to those that migrate even when no
attack is observed (2.5M, 3.32%), it should be noted that since we do
not observe all attacks, the no attack observed migrations may
still have been influenced by an attack. We also find the percentage
of Web sites that either already used a DPS, or during our study
migrated to using a DPS, to be much larger for those Web sites
that were attacked (22.1%) compared to those for which we did not
observe an attack (4.2%).

While our list of 10 protection services is not exhaustive – AWS
(Amazon) and GHS (Google) actually offer DoS protection that we
cannot infer and, therefore, the many Web sites they host count
towards non-migrating in our classification – we take this into
account in the following analysis and further discuss this limita-
tion in Section 8. Additionally, because our attack events and DPS
datasets cover the same time range, it is possible that we incor-
rectly classify attacks that occur close to the beginning and/or end
of our observation period. More specifically, attacks that overlap
the beginning of our DPS data set may have already prompted
migration, thus resulting in an incorrect preexisting customer
classification; similarly, attacks starting near the end may result in
migration after our observation period, thus causing in an incor-
rect non-migrating classification. By shortening the observation
period of the attacks data by one month on either end and repeat-
ing our analyses, we verified that these potential misclassifications
have a negligible effect on the overall Web site class distribution.

We manually checked a small sample of Web sites to gain insight
into the types of Web sites that are among various combinations
of hosting size groups and customer classes.19 We sampled from
the smallest (i.e., n = 1), as well as the largest (i.e., n ≥ 106) hosting
groups, and for each of the three DPS customer classes (i.e., the
leaves of the attacked subtree in Figure 8). For the largest hosting
group, among those that migrate to a DPS after an attack, we find
manyWeb sites that can be traced to the WixWeb site development
platform (also mentioned in Section 5). The Web sites we visited
have either personal or business content. Among non-migrating
within the largest hosting group, we find a lot of landing pages that
can be traced to a domain reseller that uses AWS for hosting, as well
as personal and business Web sites hosted in Google Cloud. Among
the preexisting customers we find both personal pages and
commercial Web sites such as a Web shop. For the smallest hosting
group, we find among migrating and preexisting customers
Web sites that belong to businesses, community Web sites (e.g.,
related to gaming), and occasionally content for a foundation.20 For
the non-migrating class we find, among others, adult Web sites
for (video) chat.

Repeated attacks are not a determining factor formigration.
We observe a significant fraction (∼14%) of Web sites attacked
more than once within our observation period. We investigated if
the number of attacks experienced by a Web site correlates with
migration to a DPS. The top graph in Figure 9 shows the CDF for
the distribution of all attacked Web sites as a function of the attack
frequency: 7.65% of these sites are attacked more than 5 times.
The bottom graph in the same figure shows instead the CDF, as a
function of the attack frequency, for Web sites that migrate to a DPS
after an attack event. In this case, the fraction of Web sites that were
attacked more than 5 times is 2.17%. The comparison between the
two distributions, suggests that being subject to multiple attacks is
not a significant factor in subsequent migration to a DPS.
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Figure 9: The distributions of attack frequency for all Web
sites (top graph) and those that migrate to a DPS following
an observed attack event (bottom graph), a comparison of
which suggests that being subject to multiple attacks is not
a significant factor in subsequent migration to a DPS.

Earlier migration follows attacks of higher intensity. DoS at-
tacks that severely affect Web sites are likely to create an urgency

19As outlined in Section 3.2, we did not automatically verify for each potentially
affected Web site if content was being served at the time of an attack.

20In one case we visited a Web site with radical right content, which may or may
not speak to why the Web site was attacked.
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Intensity (≤) 0.0 0.07 0.13 0.52 0.85 1.0
Web sites (%) 11.1 95.0 97.5 99.0 99.9 100.0

Table 9: Attack intensity distribution over Web sites. For se-
lect percentiles we show the normalized attack intensity in
the honeypot and telescope data sets. In case of joint attacks,
we take the highest intensity.

to mitigate. This notion makes it reasonable to assume that Web site
owners (or hosters) who opt to outsource protection to a DPS will
want to do so in an urgent manner. Table 9 shows the normalized
attack intensity distribution over attacked Web sites. In the case a
Web site is associated with multiple or even simultaneous attacks
(e.g., a target IP that appears both in the telescope and honeypots
data sets), we pick the highest normalized intensity value.
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Figure 10: Migration delay for attack intensities. For various
percentiles of the normalized attack intensity distribution,
ranging from any to the 99-th, we show the number of days
it took for Web sites to migrate to a DPS. An urgency to mi-
grate becomes apparent with increasing attack intensity.

Figure 10 shows the cumulative distribution functions of days it
took Web sites to migrate, respectively for Web sites attacked with
any intensity (slowest CDF), and with intensities in the 95-th, 99-th,
99.9-th percentiles of the normalized attack intensity distribution
(Table 9). Comparing these CDFs highlights a drastic reduction of
the latency between an attack and the effected site migrating to a
DPS: almost all (98.6%) the top 0.1%Web sites by attack intensity
transition to a DPS within 6 days, whereas for the top 1%, 5% and
overall Web sites only 77.1%, 67.1% and 29.9% of them respectively
transition within the same number of days. When considering the
Web sites that transition to a DPS within a day from the attack, the
difference between the top 0.1% class and the overall distribution
is even more striking: 80.7% versus 23.2%, respectively. Differently
from the number of attacks, the intensity of a DoS event strongly
correlates with migration to a DPS, specifically in terms of speed,
which intuitively suggests a sense of urgency in mitigating DoS
damage and risks.

Large hosters can potentially skew the mitigation delay distri-
bution by migrating many Web sites at once: if multiple Web sites
are associated with an given attack of a given intensity, each Web
site counts towards the CDF. We investigated this potential for

skew and found that few migrating Web sites in the top 97.5-th
percentile were hosted in large numbers.

Attack duration does not strongly correlate with migration.
Here we evaluate if attack duration may influence transition to a
DPS and specifically timing. As outlined in Section 3.1.1, a target
that is brought down by a successful attack will slow down or alto-
gether stop backscattering packets to the telescope. As such, attacks
successful enough to trigger migration might be registered with
shorter than actual durations in the telescope data set. Amplifiers
on the other hand will still receive packets to reflect to the target,
and thus have a better sense of the actual attack duration. For these
reasons we only consider the durations from the honeypots data
set in this analysis.

Overall, we find that the number of days it takes migrating
Web sites to migrate does not necessarily keep decreasing with
an increasing attack duration, unlike is the case for attack intensity.
Attacks longer than four hours in duration, which is the top 1%
durations of all honeypot events (Section 3.1.2), lead to the smallest
migration delay for migrating Web sites. Figure 11 shows the
CDF for Web sites affected by attacks within this duration class:
of all Web sites associated with attacks that last over four hours,
67.64% take a day or less to migrate, and 76%migrate within at most
five days. However, more than half of the Web sites that migrate on
the next day, following a 4 hours or longer attack, have a common
denominator. Specifically, 482 k out of 800 k Web sites trace back to
Wix.com, who starts outsourcing protection to Incapsula during our
observation period. About 18% take two weeks or longer to migrate,
suggesting that duration by itself is not always the deciding factor.
We also find common denominators for longer migration delays.
For example, 130 k Web sites hosted by eNom take more than three
months (101 days) to appear as migrating Web sites (of Verisign).

1 2 3 4 5 6 7 8 16
Days to migration

  0%
 10%
 20%
 30%
 40%
 50%
 60%
 70%
 80%
 90%
100%

M
ig

ra
tin

g 
W

eb
 s

ite
s

67.6%
76.0%

Figure 11: DPS migration delay for longer attacks. The num-
ber of days it took for Web sites to migrate to a DPS follow-
ing attacks with a duration ≥4 hours.

Finally, we find larger parties that skew the results in favor of, as
well as against, short migration delays. Comparing the two previous
examples, the first one involves an attack that is three times as
intense. Specifically, it involves a normalized attack intensity of
0.18 in the telescope data. This target appeared simultaneously in
both the telescope and the honeypots data sets. This finding leads
us to conclude that in this case intensity rather than duration was
the deciding factor.
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7 RELATED WORK
We group related work into three areas of study. The first one
pertains to efforts to characterize DoS attacks in general. Such
characterizations include, for example, target properties (e.g., ge-
olocation), traffic characteristics (e.g., protocols used), and attacker
properties (e.g., malware fingerprinting). The second area is con-
cerned with efforts to measure the effects of attacks. And the third
one focuses on attack mitigation.

In 2006, Moore et al. [17] characterized DoS attacks by analyzing
events inferred from backscatter packets to a large network tele-
scope. The authors analyze 22 traces of 1-2 weeks each, captured
between 2001-2004, totalling 68.7 k events. We incorporated their
methodology in our work. Their initial trace is 14 years older than
our telescope data set. Comparing results, ours show that the DoS
landscape has since changed. As an example, while still dominant,
TCP’s presence in randomly spoofed attacks has reduced. Moreover,
we find a prevalence of single-port attacks.

Krämer et al. [7] and Thomas et al. [28] both present a charac-
terization of attacks from events captured in a set of amplification
honeypots. While in both papers the focus is more on reflection
attacks in general, in this paper we focus on the correlation with
randomly spoofed attacks and on target characteristics. A different
view on DoS attacks is given by Santanna et al. [2], who study traf-
fic and source characteristics of the attacks generated on-demand
by means of a set of 14 booters. Differently from our paper, this
research focuses on the attackers (i.e., the misused infrastructure).

To our knowledge, the last study to characterize DoS attacks at
scale by combining multiple, independent data sets dates back to
2006, when Moa et al. used three data sets [29] in their work. Two
data sets came from anomaly detection systems and a third was
inferred from backscatter. Their analysis covers 35 k attack events,
measured over a month, which does not compare in scale with our
study. The authors find a TCP preference similar to Moore et al.,
using the same methodology.

More recently, in 2015, Wang et al. [30] analyzed a set of 51 k
attack events derived from botnet Command & Control (C&C).
Their data set covers a seven-month period and accounts for attacks
launched using 674 botnets of 23 different botnet families. They
too find joint attacks, in their case by different botnet instances.
Furthermore, they show that Web services (i.e., HTTP) are the
preferred target of many attacks.

The industry regularly releases reports that characterize attacks
and trends [31–34]. However, these reports are based on customer-
specific data, and oftentimes do not state the scientific method
used.

In terms of attack effects, Welzel et al. measured the impact of
botnet attacks by monitoring for targets in botnet C&C [35]. Their
study covers 646 unique targets, acquired from 14 botnet instances
of two botnet families (DirtJumper and Yoddos). Following attack
commands, the authors systematically measure the victims for
adverse effects. Occassionally they find that the IP address of a Web
site changes following an attack, e.g., in an attempt to mitigate,
by pointing it to localhost. In a few cases the IP address change is
made to (quote) “professional load balancing and DDoS protection
services,” but this is not investigated further.

Noroozian et al. [36] study the consequences of victimization
patterns in targets of DDoS-as-a-Service (e.g., booters). Their focus
is on the demographics of the target population. Their results show,
among others, that most of the victims are users in access networks,
and that the number of attacks in broadband ISP is proportional to
the number of ISP subscribers. Similarly to us, their study is also
based on two years of data from the AmpPot project. However, we
focus in capturing a larger spectrum of attack events by correlating
amplification honeypots data with network telescope data.

In terms of effects at a higher level, a DoS attack can have finan-
cial consequences for a company, which could face an increase in
security costs, or a loss of customers following an attack [37]. While
DDoS intensity peaked at 400 Gbps [38] in 2014 and to 600 Gbps in
early 2016 [39], the race to the largest DDoS has already reached
1Tbps in late 2016 with the attack against the hosting company
OVH [1]. However, it is not only about how heavy the hammer is,
it is also about what it might break. The DDoS attack performed
by the Mirai botnet against the service and DNS provider Dyn [3]
has provoked a cascading effect that prevented East Coast users to
access services such as Twitter, Spotify, or Reddit.

As for mitigation, although the concept of regional cleaning
center was already described in 2004 [40], in recent years DDoS
protection services have become more and more popular. In pre-
vious work we showed a clear trend in adoption [5], but we did
not investigate if there is correlation between attack events and
migration. To the best of our knowledge no other work addresses
the link between attacks and DPS use at scale.

8 FUTUREWORK
We imagine several directions to improve the coverage and depth
of our measurement and analysis system:

• We provide a comprehensive view of randomly spoofed
and reflection and amplification attacks, but a bigger chal-
lenge is development and integration of other attack data
sources, e.g., unspoofed volumetric attacks, semantic attacks.
By demonstrating the utility of a platform for this type of
data fusion, we hope to inspire the community to consider
what cooperation would be required to expand the set of
data sources.

• Operating such a platform continuously would allow to elim-
inate the bounding problem, i.e., we do not know which
attacks took place before, nor do we know which Web sites
migrated to a DPS after, our observation period.

• We examined migration to only ten DPS providers, so we
mistakenly infer instances of migration to some other form
of protection (e.g., Google) as non-migrating. For now we
avoid making claims related to the non-migrators, but a more
comprehensive view of the DPS ecosystem would improve
the fidelity of our inferences.

• We currently consider 50% of the global DNS name space, a
constraint of the OpenINTEL DNS measurement infrastruc-
ture. If OpenINTEL could expand to obtain visibility of other
Top Level Domains, we would expand our ability to identify
and characterize attacks on Web sites.

• We interpret an A record for a www domain name as an indica-
tor of Web service, though the IP address may host no Web
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site. We could add functionality to validate the existence of
a Web server before inferring an impact on its reachability.
More generally, we could see if the targeted IP addresses run
other services.

• We examined the effect of attacks on the migration of Web
sites to protection services. As future work, and without
adding any other data sources, we could map targeted IP
addresses to authoritative name servers, and study the po-
tential effect of attacks on the DNS itself. A potential effect
is, e.g., the migration of an authoritative name server to a
DPS.

9 CONCLUSIONS
We have established a framework for a more thorough scientific
approach to macroscopic characterization of the DoS ecosystem by
systematically integrating and correlating large, diverse data sets
captured by existing global Internet measurement infrastructure.
We integrated data from a large network telescope, honeypots in-
strumented to observe reflection DoS attacks, and a platform for
large-scale active DNS measurements. We augmented these three
sources with meta-data such as BGP prefix-to-AS, IP geolocation,
and identifiers of DDoS Protection Services and hosting providers.
We then developed functionality to extract macroscopic as well as
detailed insights about DoS attacks and their impact on Internet
infrastructure. Our analysis demonstrates the potential of sustained
operation of such infrastructure, and extensions of our analysis
approach, in terms of providing situational awareness and inform-
ing Internet research, operations and policy communities about
a growing threat to Internet stability and reliability. While most
of the measurement infrastructure that enables this work already
collects data in near-realtime, a significant challenge is enabling
near-realtime data fusion, extraction, correlation and visualization
to maximize its utility. Our experience in developing this frame-
work, and performing the rigorous characterization of two years of
DoS activity, presents a first step in what we hope can become a
badly needed source of longitudinal data about the health of what
is now our primary communications fabric.
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