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Abstract—Intrusion detection is an important area of research.
Traditionally, the approach taken to find attacks is to inspect
the contents of every packet. However, packet inspection cannot
easily be performed at high-speeds. Therefore, researchers and
operators started investigating alternative approaches, such as
flow-based intrusion detection. In that approach the flow of data
through the network is analyzed, instead of the contents of each
individual packet.
The goal of this paper is to provide a survey of current research

in the area of flow-based intrusion detection. The survey starts
with a motivation why flow-based intrusion detection is needed.
The concept of flows is explained, and relevant standards are
identified. The paper provides a classification of attacks and
defense techniques and shows how flow-based techniques can
be used to detect scans, worms, Botnets and Denial of Service
(DoS) attacks.

Index Terms—Network flows, intrusion detection, attacks, DoS,
scan, worms, Botnets.

I. INTRODUCTION

Nowadays hackers are continuously attacking networked
systems; in fact, it would be interesting to investigate if there
are still Internet users who have not been victim of an attack
yet. Considering the damage caused by the attacks (billions
of U.S. dollars) [1], it is important to detect attacks as soon
as possible, and take, if feasible, appropriate actions to stop
them. This task is particularly challenging due to the diversity
in form (information gathering, password stealing, viruses,
Trojan horses, Denial of Service (DoS)...) attacks exhibit.
For the detection of network attacks, special systems have

been developed; these systems are called Network Intrusion
Detection Systems (NIDS). In an attempt to find known
attacks or unusual behavior, these systems traditionally in-
spect the contents (payload) of every packet [2], [3]. The
problem of packet inspection, however, is that it is hard,
or even impossible, to perform it at the speed of multiple
Gigabits per second (Gbps) [4], [5]. For high-speed lines,
it is therefore important to investigate alternatives to packet
inspection. One option that currently attracts the attention of
researchers and operators is flow-based intrusion detection.
With such approach, the communication patterns within the
network are analyzed, instead of the contents of individual
packets. Research in this field is still relatively in its beginning,
even if initial ideas to abstract from communication details
and analyze source/destination pairs instead can already be
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found in papers published in the early 1990s (see for example
Heberlein et al. [6] and Staniford-Chen et al. [7]). Nowadays
special measurement systems are able to provide, for every
pair of IP addresses and port numbers, aggregated information,
such as the time data exchange has started, the time it has
stopped, the amount of transferred bytes and the number of
sent packets. These systems export this information in the
form of Netflow [8], [9] or IPFIX [10] records to systems
that analyze them. These analysis systems can then be used
to detect intrusions.
In our opinion, flow-based detection can be seen as a

complement of packet inspection, and should not be seen
as a replacement. Both approaches can be combined into
a two-stage detection process. At the first stage, flow-based
approaches can be used to detect certain attacks. At the second
stage, packet inspection can be used to additionally protect
critical servers or selected systems, for which the first stage
has discovered suspicious activities.
This paper provides a survey of current research in the area

of flow-based intrusion detection. This means that we consider
only contributions in network intrusion detection that make
explicit use of network flows as their main input. To limit our
scope, we will not consider payload-based methods; readers
interested in such methods can refer to existing literature [11],
[12], [13], [14], [15]. Since we concentrate on network flows,
our paper does not consider host-based intrusion detection
systems. Last, since details of commercial products are hard
to obtain, these have also been left out of this survey.
The paper is organized as follows: Section II describes

the motivations that have encouraged researchers to start this
research. Section III explains the concept and ideas behind
flows, as well as the network infrastructure needed for flow
monitoring and analysis, such as intrusion detection. Section
IV provides a classification of current attack techniques,
whereas Section V provides a classification of defense tech-
niques. Section VI discusses how flow information can be used
to detect intrusions; in this section, the focus is on thwarting
Denial of Service (DoS), scans, worms and Botnets. Finally,
Section VII presents some conclusions and discusses the
strengths and weaknesses of current flow-based approaches.

II. MOTIVATION

The Internet is a complex system in constant evolution.
Nevertheless, it is possible to make some observations with
respect to security.
A first observation is that the number of attacks continues

to grow. The Cert Coordination Center [16], one of the
most well-known risks, security threats and incidents response
centers, offers summaries of the yearly security situation of the
Internet. The Cert/CC maintains a database of vulnerabilities,
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with the aim to categorize them according to their severity
level and damaging impact on the systems. Vendors, system
administrators and users are encouraged to submit vulnerabil-
ities. In a similar way, in the past, Cert/CC asked the Internet
community for collaboration in order to report the incidents
the users were subject to. Cert/CC defines an incident as the
act of violating an explicit or implied security policy [16].
This definition, according to the Cert/CC, covers attempts to
gain access to (information on) a system, Denial of Service,
disruptions, unauthorized uses and changes to hardware and
software.
Since 1995, Cert/CC published each year the number of

catalogued vulnerabilities. In fact, the reporting of incidents
started already in 1988, but ended in 2003. The reason to
stop can easily be understood from Figure 1: the growth of
reported incidents is nearly exponential, while the number of
catalogued vulnerabilities shows a slower growth factor. The
Cert/CC itself [16] gives the following explanation:

“Given the widespread use of automated attack tools,
attacks against Internet-connected systems have be-
come so commonplace that counts of the number
of incidents reported provide little information with
regard to assessing the scope and impact of attacks.
Therefore, we stopped providing this statistic at the
end of 2003.”
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Fig. 1: Trends in incidents and vulnerabilities (logarithmic scale).

A second observation is that Internet traffic, as well as line
speed, continues to grow. Nowadays an access speed of 1-
10Gbps is not unusual. A university network, for example,
reaches traffic averages in the order of hundreds of Mbps,
with high activity peaks in the order of Gbps. On backbone
networks, the throughput will even be higher. Internet2 [17],
for example, publishes weekly reports of the Abilene traffic.
Figure 2 shows the growths in the period 2002-2008.
It is clear that Network Intrusion Detection Systems should

be able to handle the growing number of attacks, the growth
in Internet traffic as well as the increase in line speed. Re-
searchers assess the current, payload-based, NIDS processing
capability to lie between 100Mbps and 200Mbps [4], [5].
Well known systems like Snort [2] and Bro [3], exhibit high
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Fig. 2: Network throughput (Gbps) for the network Abilene[17].

resource consumption when confronted with the overwhelming
amount of data found in today’s high-speed networks [18].
In addition, the spread of encrypted protocols poses a new
challenge to payload-based systems. An example is the work
of Taleb et al. [19], [20], where the authors propose an
intrusion detection systems based on per-packet inspection that
rely only on header information in order to identify misuses
in encrypted protocols.
Given these problems, flow based approaches seem to be a

promising candidate for Intrusion Detection research.
Flows are created by specialized accounting modules usu-

ally placed in network routers. The same modules are respon-
sible of exporting the flows to external collectors (see Section
III). Flow-based Intrusion Detection Systems will analyze
these flows and detect attacks. Compared to traditional NIDS,
flow-based NIDS have to handle considerable lower amount
of data. For example, in the case of the University of Twente
network, we calculated that the ratio between packets exported
by NetFlow (containing the flow records) and the packets on
the network is in average equal to 0.1%. Moreover, considering
the network load measured in bytes, the overhead due to
Netflow is in average 0.2%. Flow based intrusion detection is
therefore the logical choice for high-speed networks. However,
there might exist situations in which the benefit of using flows
is not so pronounced. The worst case scenario would be when a
flow is created for each packet passing through the monitoring
point, as a consequence of a distributed DoS attack (DDoS),
for example. In this case, the number of flows would increase
dramatically and extra load would be put on the monitoring
and analysis systems. To mitigate this problem, or, in general,
to improve the performance of routers and monitoring stations,
sampling techniques or flow aggregations [21] can be applied.
Sometimes it is argued that flows do not carry enough

information, compared to payload inspection, for being useful
for intrusion detection. The answer to this question highly
depends on the user’s goals. Flows, which represent by
nature aggregated information, do not carry any payload.
They, therefore, do not provide the detection precision of
packet-based inspection, which allows for example pattern



3














  
 

Fig. 3: IP Flow exporting and collecting architecture [22], [8].

matching in payload content. Flows are limited to information
regarding network interactions. With this information, it is still
possible, however, to identify communication patterns between
hosts, when communication takes place and which amounts
of packets and bytes have been moved. For many attacks,
this information is sufficient. In any case, it is important to
underline that flow-based intrusion detection is not supposed
to substitute the packet-based one, but rather complements
the approach by allowing early detection in environments in
which payload-based inspection is not feasible. As described
by Schaffrath et al. [23], in an ideal world payload-based so-
lutions would always outperform flow-based ones in accuracy.
In high-speed networks, however, the processing capabilities
of the NIDS may be too limited to allow payload-based
approaches.

III. IP FLOWS
In the last decade, flows have become quite popular in IP

networks. Nowadays all major vendors equip their routers with
flow accounting capabilities. Traffic information is collected
and stored in flow records that provide an overview of network
usage at different levels of granularity.

A. Flow definition
In literature, several definitions of an IP flow can be found

[8], [24], [9]. This article follows the definition of IP flow as
it was described by the IPFIX (IP Flow Information Export)
working group within IETF [10], [22]:

“A flow is defined as a set of IP packets passing
an observation point in the network during a certain
time interval. All packets belonging to a particular
flow have a set of common properties.”

In the IPFIX terminology, the common properties are called
flow keys: they are, for example, source and destination ad-
dresses, source and destination port numbers and IP protocol:

(ip src, ip dst, port src, port dst, proto).

Aggregated views on the network traffic can be obtained by
choosing coarser grained flow definitions, according to the

need of the network administrator, as discussed in the work of
Fioreze et al. [24]. It is important to underline the difference
between flows and connections, as used in the case of TCP.
A flow can exist also in situations in which there is no TCP
connection: an example of this is a UDP flow, where a set of
packets has been sent from a certain source address/port to
a certain destination address/port. Moreover, a flow does not
have size restrictions: each communication between source and
destination hosts will generate a flow, even if a single packet
has been exchanged.
Accounting flows is a two-step process: flow exporting, and

flow collection. These tasks are performed by two components:
flow exporter and flow collector. Figure 3 shows this export-
ing/collecting process.
The flow exporter, also known as observation point, is

responsible for the metering process, i.e., creating flow records
from observed traffic. The flow exporter extracts the packet
header from each packet seen on the monitored interface. Each
packet header is marked with the timestamp when the header
was captured. After that the header is processed by a sampling-
filtering module, where it can be sampled (see Section III-C)
or filtered. The final step is the update module. Each incoming
packet header triggers an update to a flow entry in the flow
cache. If there is no flow matching the packet header, a new
flow entry is created. Once a flow record expires, it is sent to
the flow collector. In case of Cisco NetFlow [8] and similarly
in IPFIX [25], a flow is considered expired when:

• the flow was idle (no packets have been detected in the
flow) for a longer time than a given threshold (known
as inactive timeout). The default value for the inactive
timeout for Cisco Netflow [8] is, for example, 15 seconds,
but it can be changed according to the requirements of
the network to be monitored.

• the flow reaches the maximum allowed lifetime. When
this happens, its corresponding flow record is exported
to the collector and, if necessary, a new flow record is
created for that flow (active timeout). For Cisco Netflow,
the active timeout is 30 minutes, but our experiences
showed that shorter timeouts are also common. At the
University of Twente, for example, an active timeout of
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1 minute is used.
• the FIN or RST flags have been seen in a TCP flow.
• the flow-cache memory gets full. In this case, certain
flow records are marked as expired and exported to the
collector. Least Recently Used (LRU) algorithms may be
used to free the flow-cache memory, as well as heuristic
algorithms.

The aim of the flow collector is to retrieve the flows created
by the flow exporter and to store them in a form suitable for
further monitoring or analysis.

B. Flow Export Protocols
A flow export protocol defines how flow records are trans-

ported between an exporter and a collector. Netflow version 5
[8], developed by Cisco, has a very simple flow export protocol
that transports flow records of fixed size (48 bytes in total).
A Netflow v5 flow record contains source and destination IP
addresses and ports, start and end timestamps, type of service,
level 3 protocol, TCP flags next hop router, input and output
SNMP interfaces, source and destination autonomous systems
and network masks. Moreover, each flow carries aggregated
information about the amount of packets and bytes exchanged.
Netflow version 9 and IPFIX propose flexible protocols in

which flow record formats can be defined by using templates.
The latter protocols allow also a larger set of parameters to
be used as flow keys. An IPFIX packet is logically divided
into sections known as sets. A message can normally consist
of three kinds of sets, namely Template sets (format template
exchange), Data sets (flow records) and Options Template Sets
(necessary for the correct interpretation of a Template set). For
a more detailed treatment of the IPFIX message format, see
[22].

C. Sampling
IP flow accounting requires state information to be kept for

each active flow. On high-speed links, there may be millions
of packets per second and hundreds of thousands of active
flows. If for each incoming packet, a flow lookup is performed
and state information is kept for each flow, a heavy demand
will be put on the CPU and memory resources of the flow
exporter. In order to reduce this demand, sampling meth-
ods can be deployed. The IETF PSAMP (Packet Sampling)
working group [26] is currently discussing the creation of
possible standards in this area. It should be noted, however,
that sampling not only lowers the demands put on the flow
exporter, but also makes detection of intrusions harder. Several
studies discuss the impact of sampling on intrusion detection
and flow accounting. Examples are Brauckhoff et al. [27], Mai
et al. [28] and Zseby et al. [29].
Two main categories of sampling can be identified: packet

sampling and flow sampling.
• Packet Sampling: as explained in Izkue et al. [30], Wang
et al. [31] and He et al. [32], sampling techniques can be
divided into systematic and random ones. In systematic
packet sampling, a packet is deterministically selected on
the base of a time interval (time-driven sampling) or a

sequence of packet arrivals (event-driven sampling). For
example, it is possible to select a packet every t seconds,
or a packet every n packets. In random packet sampling,
on the other hand, the sampling process relies on a
probability distribution function. The two main classes
of random sampling are:
– n-in-N sampling: The traffic is split into sequences
of N packets. Out of these, n are randomly selected.

– probabilistic sampling: Each packet is sampled with
probability p. This sampling probability p can be
fixed, or can depend on specific packet character-
istics, such as for example the packet size.

The deployment of one or more packet sampling strate-
gies depends on which traffic characteristic the adminis-
trator is interested in. NetFlow is using an n-in-N sam-
pling technique, usually in the form of 1-in-N sampling.

• Flow sampling: similarly to random packet sampling,
random flow sampling algorithms sample each flow with
a random probability. Sample and hold, for example,
is a sampling method proposed by Estan et al. [33]
that accurately accounts for large flows. In this case,
when the system detects the presence of a new packet
that does not belong to any already existent flow, it
creates a flow entry with probability p. If the new flow
is created, all following packets belonging to the flow
will be accounted, as opposed to packet sampling in
which each packet independently undergoes the sampling
procedure. It is easy at this point to imagine why this
sampling strategy is biased towards large flows. Duffield
et al. [34], [35] and Alon et al. [36] proposed Smart
Sampling as a method to dynamically control the size
of sampled data. Smart Sampling, both in the form of
threshold sampling [35] and priority sampling [36], is
based on the observation that packets and bytes in flows
follow a heavy tailed distribution. A simple flow sampling
strategy may omit flows that have large impact on the
estimation of the total traffic of the network. To overcome
this problem, Duffield et al. and Alon et al. propose
sampling schemes in which the probability that a flow
will be sampled depends on its size.

This section gave an overview of how flows are created. To
understand how flows can be used for intrusion detection, we
are now going to give a brief overview of the attacks present
in our networks.

IV. ATTACK CLASSIFICATION

Several attack classifications have been described in litera-
ture [37]. These classifications usually distinguish between the
following basic categories [38], [39]:

• Physical attacks: attacks based on damaging the com-
puter and network hardware.

• Buffer overflows: attacks that gain control or crash a
process on the target system by overflowing a buffer of
that process.

• Password attacks: attacks trying to gain passwords,
keys, etc. for a protected system.
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• (Distributed) Denial of Service attacks: an attack which
leads to situations in which legitimate users experience a
diminished level of service or cannot access a service at
all.

• Information gathering attacks: an attack that does not
directly damage the target system, but gains information
about the system, possibly to be used for further attacks
in the future. This category comprises network traffic
sniffing and (port) scans.

• Trojan horses: a program disguised as a useful applica-
tion, which deliberately performs unwanted actions.

• Worms: a program that self-propagates across a network.
Self-propagation is the characteristic that differentiates
worms from viruses (see below). A worm spread can
be extremely fast: an example is the Sapphire/Slammer
worm, which is known to have infected 90% of the
vulnerable hosts in 10 minutes [40].

• Viruses: a virus is regarded as a worm that only replicates
on the (infected) host computer. Hence, it needs user in-
teractions to propagate to other hosts. Often, the definition
also requires that a virus has to attach itself to files on the
host, e.g., executable files, in order to be activated. As a
consequence, the speed of spreading cannot be compared
with a worm spread.

In addition, Hansman et al. [39] summaries under the
category “Network attacks” various other attacks, such as
spoofing, session hijacking and parameter tampering.
The previous categories should not be regarded as mutual

exclusive classes of attacks. For example, buffer overflows and
port scans can be regarded as separate categories of attacks,
but also as specific techniques used by worms and DoS attacks.
Rather, these categories describe general “concepts” of attacks
that have been frequently observed in practice. Note that not
all taxonomies provide a classification like the one given
above. For example, Howard [41] focuses on a process-driven
taxonomy, based on the objective of the attacker, the used
tools, etc.
Nowadays, an additional threat has evolved pertaining Bot-

nets. Botnets are groups of computers “infected with malicious
program(s) that cause them to operate against the owners’
intentions and without their knowledge”, as defined in Lee
et al. [42]. Botnets are remotely controlled by one or more
bot-masters. Moreover, Botnets are the perfect infrastructure
for setting up and supporting any kind of distributed attack,
such as, for example, DoS attacks and SPAM campaigns.
Infected hosts unknowingly become part of Botnets, and take
part in malicious activities [43], [44]. The threats posed by
Botnets are such that we decided to include them in our attack
classification.
Flow-based intrusion detection, since it relies only on header

information, can address only a subset of the attacks presented
above. In particular, the research community currently pro-
vides approaches to detect the following classes of attacks:

• Denial of Service;
• Scans;
• Worms;
• Botnets.

Approaches to detect these attacks will be further discussed
in Section VI.

V. DETECTION CLASSIFICATION

According to Halme et al. [45], an Intrusion Detection
System is an anti-intrusion approach that aims to discriminate
intrusion attempts and intrusion preparation from normal
system usage. Since the first papers on intrusion detection
appeared in the Eighties of the previous century, several
taxonomies of intrusion detection techniques were proposed.
Our study identifies two main contributions to the field, the
work of Debar et al. [11], [12] and that of Axelsson [13].
Debar et al. [11], [12] were among the first to propose

an intrusion detection system taxonomy. Their classification
focuses on the following elements:

• Detection Method: if a system bases the detection on
a definition of normal behavior of the target system, it
is called behavior-based. If it matches the input data
against a definition of an attack, it is known as knowledge-
based. In literature, the community usually refers to these
classes with the names of anomaly-based and misuse-
based solutions [46], [13], [14], [47], [48].

• Behavior on detection: a system can be proactive and
act against the intruder (active system) or can generate
alerts that will be later processed by a different system
or a human operator (passive system).

• Audit source location: the data processed in order to
detect intrusion can be host or application logs, network
packets or alerts generated by other detection systems.

• Detection Paradigm: the IDS can detect the current
status of the target system (secure or insecure) or can
alert on a state transition (from secure to insecure).

• Usage frequency: the system can perform its task in real-
time (continuous monitoring) or post-mortem (periodic
analysis)

Axelsson [13] bases his taxonomy on the one proposed
in Debar et al. [11], [12], but extends and completes it. In
particular, beside the previously described characteristics, a
system is described also on the basis of the following:

• Locus of data-processing: a system can be centralized
or distributed, irrespectively of the origin of the data.

• Locus of data-collection: the data collection can be
centralised or distributed.

• Security: the intrusion detection system can be itself
target of security threats.

• Degree of inter-operability: a system can be built to
work in conjunctionwith other systems (exchanging data)
or stand-alone.

In his work, later followed by Almgren et al. [49], Axelsson
focuses on detection methods, once again divided in two
classes: anomaly-based and misuse-based. In that work, an
anomaly-based system can be described as:

• Self-learning: the system is able to automatically build
a model of the normal behavior of the system, or:

• Programmed: the definition of normality has to be
provided by the system developer.
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Fig. 4: Detection capabilities of different intrusion detection models [46].

A misuse-based system, on the other hand, presents a
unique subclass, programmed: the system is provided with a
knowledge-base of attacks, against which it matches the inputs.
Figure 4 shows the detection capabilities of legal and

illegal activities, for misuse (knowledge-based) and anomaly
(behavior-based) systems, respectively. A misuse-based model
is supposed to describe only illegal activities. In some cases,
however, if the system is not accurate enough, legal activities
can be flagged as intrusions; such events are called false
positives. At the same time, if the model is not complete, it
will not be able to report all malicious activities; unflagged
illegal activities are known as false negatives. An anomaly-
based model, on the other hand, is supposed to describe only
legal activities (normality). Also in this case, incompleteness
and inaccuracy can lead to false positive and false negatives.
Finally, in [13], Axelsson introduces a third class of systems

in which both anomaly-based inspired characteristics and
misused-based ones coexist. In his work, such systems are
known as compounds.
In their taxonomies, Debar et al. [11], [12] and Axelsson

[13] consider a wider spectrum of categories, including some
that are outside the scope of this paper. For example, they
distinguish between host-based and network-based detection
approaches. The former analyses the status of a single host,
monitoring internal functionality (e.g., CPU usage, system
call traces, log-in attempts). The latter bases its analysis
on network information and can monitor an entire network.
In this paper, we are only interested in this second kind
of systems, since we are analyzing network data only. In
particular, we are interested in flow-based approaches; since
such approaches are relatively new, the taxonomies found
in literature do not explicitly consider them. Despite this,
since flows represent network-based aggregated data, we still
consider the taxonomies useful for our purpose.

VI. FLOW-BASED SOLUTIONS

This section presents the state of the art solution for each
category of attack that can be detected using flows (see Section
IV). Moreover, it classifies each contribution according to the
taxonomies presented in Section V.

A. Denial of Service
Detection of Denial of Service is often addressed in flow

based intrusion detection. These attacks, by their nature, can

produce variations in the traffic volume that are usually still
visible at flow scale.
It is important to underline, nevertheless, that in case of

flow-based detection we are implicitly addressing the problem
of brute force DoS attacks, i.e., a type of DoS that relies on
resource exhaustion or network overloading. Unfortunately, it
is almost impossible to directly detect semantic DoS attacks,
i.e., attacks in which the service interruption is caused by the
payload contents. For example, let us consider the (nowadays
out-of-date) Ping of Death attack. In such attack, the attacker
sends malformed or otherwise malicious ping packets, which
causes the victim system to crash. Since this attack does
generate a single ICMP flow, the attack would most likely
go undetected. There would be, indeed, no change in flow
frequency and intensity. A different case of semantic attack
would be one that changes the distribution of flows. An
example is the DoS effect related to the scanning phase of
the Sapphire/Slammer worm [40]: while spreading, the worm
provokes the crash of Microsoft SQL Server hosted on the
target machine. Nevertheless, at flow basis, the detection of
this attack would be most probably related to the scanning
phase, and not to the DoS itself.
An overview of how often DoS attacks appear in practice

is given in Moore et al. [50]. They estimate that, based on an
analysis conducted over multiple one-week traces for a period
of three years, on average the number of different victim IPs on
the entire Internet is 24.5/hours. Even though Moore et al. do
not specify if they investigated brute force or semantic attacks,
the statistics clearly show that DoS attacks detection is, still
in these days, a problem that requires experts’ attentions.
There are two main examples of anomaly-based DoS de-

tection in high-speed networks, using flow information only.
The work of Li et al. [51] and Gao et al. [52], in the first
place, approach the problem using aggregate flow measures
collected in appropriate data structures, named sketches. A
sketch is originally a one-dimensional hash table suitable for
fast storing of information: it mainly counts occurrences of
an event. In their papers, the authors work with 2D sketches,
a more powerful extension of the original ones, in which, for
each dimension, a set of flow-derived fields is hashed. Sketches
permit to statistically characterize how the traffic varies over
time, simply by tracking the presence of a flow in a specified
time frame. An anomaly-based engine triggers alarms based
on a forecast value of the measure the system is supposed
to monitor: a sharp variation from the mean is flagged as an
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anomaly. A simple example of the use of sketches in DoS
attacks is the detection of SYN Flooding attacks [53], as
described in Gao et al. [52]. In this case, the sketch is supposed
to store, for each time frame and each tuple (dest_IP,
dest_port), the difference between the number of SYN
packets and the number of SYN/ACKs. If the stored value for
the current time deviates from the expected one, a DoS SYN
Flooding attack is going on. The sketch-based approach could
potentially be deployed also without the use of flows, relying
in this case on header inspection. Nevertheless, in this case the
data reduction gain provided by flows would be most probably
lost. Gao et al. developed a prototype that receives exported
flows from a netflow-enable router in real time.
A similar approach is proposed by Zhao et al. [54]. In

this case, a data-streaming algorithm is used to filter part of
the traffic, and identify IPs that show an abnormal number
of connections. The authors consider both the case in which
a host is the source of an abnormal number of outgoing
connections (large fan-out), as well as the case in which a
host is the destination of an unusual number of connection
attempts (large fan-in). The first case matches the definition
of a scanning host, while the second is used for detecting
DoS victims. The method is based on 2D hash tables, clearly
resembling the work of [51] and [52]. In their paper, Zhao
et al. also apply a flow sampling algorithm (see Section III),
to reduce the amount of data to be processed and significantly
raise processing speed. At the same time, since sampling fur-
ther reduces the available information, the authors developed
statistical formulas to accurately estimate the fan-in/fan-out of
the considered hosts.
A more detailed approach is presented by Kim et al. [55]: in

this paper many different DoS attacks are described in terms
of traffic patterns, based on flow characteristics. In particular,
the authors focus on the number of flows and packets, the
flow and packet sizes, total bandwidth used as well as average
flow size and number of packets per flow. An example of
attack pattern is the one produced by a SYN Flooding attack:
a large flow count, yet small packet counts, as well as small
flow and packet sizes and no constraints on the bandwidth
and the total amount of packets. The pattern is significantly
different from the one generated by an ICMP or UDP flooding
attack, in which we have large bandwidth consumption and
the transfer of a large number of packets. Kim et al. clearly
identify the metrics they are interested in and formalize them
into detection functions that give the likelihood of a traffic
pattern representing an attack.
In the context of DoS monitoring and detection, it is impor-

tant to cite also the work of Münz et al. [56], which propose
a general platform for DoS detection. The system, known as
TOPAS (Traffic flOw and Packet Analysis System), acts as
a flow collector for multiple sources and locations, offering
preprocessing capabilities in order to obtain an information
format suitable for further processing. On this platform, many
different detection modules can run in real-time according
to the necessities of the network administrator. Examples of
modules are a SYN flood detection module, a traceback module
(to allow identification of the entry point of spoofed packets in
the attacked network) and a Web Server overloading module

(focusing on DoS attacks using HTTP requests). The work
has been developed within the context of the European Diadem
Firewall project, which specifically focuses on DoS and DDoS
detection [57].
Attention must also be given to the work of Lakhina

et al. [58], [59], [60], [61]. The analysis is conducted on
flow aggregation, namely on origin-destination flows between
Points of Presence (PoP) on the Abilene [17] and Sprint-
Europe [62] networks. On this small set of pairs (only n2,
where n is the number of PoPs), it is possible, through
principal component analysis, to decompose the traffic flowing
through the backbone in time related traffic trends (eigen-
flows). There are three types of eigenflows: deterministic
eigenflows that show a periodical trend (day-night pattern),
spike eigenflows that show isolated values that strongly deviate
from the average and noise eigenflows that appears to be
roughly Gaussian. The spike components reveal the presence
of a traffic anomaly. The proposed method is general enough to
capture various kinds of anomalies, due to failures or attacks,
and is appropriate for almost all the attack classes we are
interested in (DoS, scans and worms).

B. Scans
Scans are usually characterized by small packets that probe

the target systems. Keeping this characteristic in mind, it is
easy to imagine that scans can easily create a large number of
different flows. There are three categories of scans: (i) a host
scanning a specific port on many destination hosts (horizontal
scan); (ii) a host scanning several ports on a single destination
host (vertical scan); (iii) a combination of both (block scan).
Irrespectively of the kind of scan, the result will be a variation
of the flow traffic in the network. At the same time, scans are
less likely to have impact on the total traffic volume, as shown
in Sperotto et al. [63].
Figure 5 shows an example of SSH flows captured in 2007

at the University of Twente (UT) and SURFnet [64], the UT
Internet service provider. The byte time series (Fig. 5(a)) is
quite irregular, with sharp high- and down-peaks that do not
clearly indicate the presence of an attack. On the other hand,
the flow time series (Fig. 5(b)) shows sudden and frequent
peaks, during which the number of flows can rise to several
hundreds of thousands per observation bin (10 minutes, in the
case of Figure 5). After a more detailed analysis, these peaks
appeared to correspond to multiple SSH scanning sessions,
trying to guess user names and passwords. An interesting
difference between SURFnet and the UT is that SURFnet
applies 1:100 packet sampling, whereas the UT does not apply
packet sampling. Still Figure 5 shows that scans can even be
detected in SURFnet, despite the sampling.
In literature, scans have generally been investigated by

considering their most obvious characteristic: the scanning
source shows an unnaturally high number of outgoing con-
nections. The problem has been approached in this way by
Zhao et al. [54], already cited in the previous section. Look-
ing at host behavior from an incoming/outgoing connection
perspective allows addressing DoS and scan attacks as faces
of the same problem: hosts with an inadequate and unusual
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Fig. 5: Byte (a) and flow (b) time series for SSH traffic at the
University of Twente network and SURFnet [63].

fan-in/out. Similarly, Kim et al. [55] attempt to describe a scan
in terms of traffic patterns, as already explained in the case of
DoS. The authors differentiate between network (horizontal)
scans and host (vertical) scans.
The approach described in Wagner et al. [65] is not related

to traffic volume anomalies. In this case, the probabilistic
measure of entropy is used to disclose regularity in connection-
based traffic (flows). Entropy has been introduced in Informa-
tion Theory in 1948 [66] and, generally speaking, is a measure
of randomness and uncertainty of a stochastic process. Entropy
is also related to lossless data compression: the theoretical
limit of the compression rate of a sequence of bits is exactly
the entropy of the sequence. Starting from this well-known
result, Wagner et al. created an efficient analysis procedure
based on compression of sequences of network measurements.
They observe that, in the case of a scanning host, the overall
entropy in a specific time window is subdued to a change. In
particular, the presence of many flows with the same source
IPs (the scanning host) will lead to an abrupt decrease of
the entropy in the distribution of the source IP addresses.

At the same time, the scanning host will attempt to contact
many different destination IPs on (possibly) different ports,
generating an increase in these entropy measurements. The
combined observation of multiple entropy variations helps in
validating the presence of an attack. Other approaches are
based on logistic regression [67] and distances from baseline
models [68].

C. Worms

Worm behavior is usually divided into a target discovery
phase (the worm explores the network in order to find vulner-
able systems) and a transfer phase (the actual code transfer
takes place) [71], [72]. Code Red [73] and Sapphire/Slammer
[40] are examples of this mechanism. Flow-based detection
systems usually focus on the target discovery phase, since the
transfer of malicious code cannot easily be detected without
analyzing the payload. In many cases, worm detection can be
similar to scan detection, and many researchers use the same
approach for both threats. The approach adopted by Wagner
et al. [65], for example, can naturally be extended to worms,
as well as the ones of Zhao et al. [54] and Gao et al. [52].
Dübendorfer et al. [69] and Wagner et al. [70] attempt to

characterize the host behavior on the basis of incoming and
outgoing connections. The proposed algorithm assigns hosts to
a set of classes. The definition of these classes is such that only
suspicious hosts will belong to them. The traffic class groups
hosts that send more traffic than what they receive. Hosts that
show an unusual high number of outgoing connections are
part of the connector class. Finally, hosts involved in many
bidirectional connections belong to the responder class. In
the proposed model, a host can belong to more than one
class. Figure 6 describes the three classes and their possible
intersections. The method aims to periodically check the status
of the hosts of an entire network. In this way, it is able to
detect worm spreads, as they cause massive changes in the
cardinality of one or more classes. Moreover, Dübendorfer
et al. [69], by properly filtering the interesting flows, manage

Fig. 6: Host classes ad their intersections[69], [70].
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to identify both e-mail spreading worms and scanning worms,
without concerns about their scanning strategies.
A different approach is taken by Dressler et al. [74], that

uses the correlation between flows and honeypots logs. In
this case, the need for a ground truth, i.e., a trusted source
of information for the system validation, made the authors
rely on a honeypot. In this way, deploying at the same
time honeypot, flow monitor and a collecting database, it is
possible to carefully identify worm flow-signatures, that is
sequence of connections and flow-related information about
the scanning and transmitting behavior of a worm. According
to the presented results, the approach seems to be promising.
Finally, Collins et al. [75] propose a solution to the problem

of hit-list worms detection. A hit-list worm is a worm that
bases its scanning strategy on the sequential probing of a pre-
defined list of hosts that are supposed to be always online. This
technique is used because worms usually have a slow initial
spreading phase, and the use of a hit-list consistently increase
the initial infection speed. Since hit-lists are commonly used
to start infections, detecting them as soon as possible may
be quite useful. Collins et al. employ a graph-based algorithm
that slices the network according to a monitored protocol (like
HTTP, FTP, SMTP, or Oracle). They argue that the number of
hosts normally involved in the use of a certain protocol, i.e.,
the number of vertexes in the graph, is in average regular
over time. Also the pattern of communication between hosts,
i.e., the cardinality of the connected components in the graph
(connected subgraphs with a maximal number of vertexes),
has the same property. This regularity is disturbed only when
a new host starts to scan the network following a hit-list: in this
case, the authors observe a larger number of vertexes in the
graph (the scanned hosts) and a drastically enlarged cardinality
of the connected components. The scanning host, indeed,
will communicate with servers (in its hit-list) that in normal
conditions do not have any connection. Figure 7 shows cases
of hit-list infections that modify the number of vertexes in the
graph and the cardinality of the largest connected component.
In the example, two servers, depicted at the bottom of the
figure, communicate with, respectively, four and three clients
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Fig. 7: Example of graph based hit-list worm spreading analysis
[75].

during a normal observation period. The two disjoint sets of
hosts will form two connected components in the protocol
graph. During a malicious observation period, i.e., while a hit-
list worm is spreading, two situations can be observed. In the
first one, on the upper left of the figure, the attacker contacts
servers that do not normally appear in the monitored traffic: as
consequence, the cardinality of the vertex set in the protocol
graph will increase, meeting the first detection condition in
[75]. In the second case, on the upper right corner, an attacker
will contact both servers, since they are on its hit-list. As a
consequence, the two connected components described in the
example will be reduced to one, meeting the second detection
condition.

D. Botnets
As explained in Section IV, Botnets consist of infected

hosts (bots) controlled by a central entity, known as master
(or bot-master). As these networks tend to be spread over
multiple administrative zones, complete identification of bots
is a difficult problem. Since bots are no longer harmful once
the master is isolated, a straightforward mitigation approach is
to identify the master. Nevertheless, as Zhu et al. [79] pointed
out in their survey on Botnet research, the defense against
botnets is not yet efficient and the research in this field is still
in its infancy.
As a fact, many Botnets used to rely on IRC channels, which

can be identified at flow level, as described in the work of
Karasaridis et al. [76]. The authors propose a model of IRC
traffic that does not rely on specific port numbers. Karasaridis
et al. address two main points. First, they propose a multistage
procedure for detecting Botnets controllers. Starting from re-
ports of malicious activity obtained from diverse sources (e.g.,
scan logs, spam logs, and viruses), the authors identify groups
of flows involved in suspicious communications (candidate
controller conversations). These conversations may happen
between a host and a candidate server (controller) that use
either an IRC port (e.g., 6667, 6668 or 7000) or that hides the
control traffic using a different protocol. In the second case, the
candidate conversation is checked against the flow model. The
second aim of Karasaridis et al. is, once the controllers have
been identified, to group the suspected bots into behavioral
groups, i.e., clusters of bots that show the same activity pattern.
For this purpose, they suggested a hierarchical clustering
procedure that groups the host based on their port activities.
In [76], the authors also explain why Botnet detection slightly
differs from scan or DoS detection. For scans and DoS, current
research aims at real time identification, with alerts that permit
the network administrator to intervene as soon as possible. In
the case of Botnets, only long time observations can lead to
the identification of the bots and controller.
In a similar way, the work of Livadas et al. [77] and

Strayer et al. [44] approach the problem by modeling the TCP
flows of IRC chats. The authors present the first results of a
study pertaining to the use of machine learning techniques
for Botnet traffic identification. In particular, they structure
their approach in order to answer two research questions: is
it possible to distinguish between i) IRC and non-IRC traffic;
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TABLE I: Categorization of the proposed solutions according to the taxonomy.
System Detection Behaviour on Usage Data Data

Method detection Frequency processing collection
Li et al. [51] Gao et al. [52] anomaly active real-time centralised distributed
Zhao et al. [54] not spec not spec real-time centralized distributed
Kim et al. [55] misuse passive real-time centralized distributed
Münz et al. [56] compound passive real-time centralized distributed
Lakhina et al. [58], [59], [60], [61] anomaly passive real-time centralized centralized
Wagner et al. [65] anomaly passive real-time/batch centralized centralized
Gates et al. [67] misuse passive batch centralized centralized
Stoecklin et al. [68] anomaly passive batch centralized centralized
Dübendorfer et al. [69] [70] compound passive real-time centralized centralized
Collins et al. [75] anomaly passive real-time centralized centralized
Dressler et al. [74] misuse passive real-time centralized centralized
Karasaridis et al. [76] misuse passive real-time centralized centralized
Livadas et al. [44] [77] not spec passive batch centralized centralized
Gu et al. [78] anomaly passive real-time centralized centralized

ii) botnet IRC traffic and normal IRC traffic. In the paper,
the effectiveness of machine learning methods, such as Naive
Bayes classifiers, Bayesian networks and classification trees,
is tested. The input is an enriched version of flows (including
additional information, such as variance of the bytes per packet
in the flow, or the number of packets for which the PUSH flag
is set). The work shows that automatic identification of Botnet
IRC traffic seems possible.
A different approach is proposed by Gu et al. [78]. They

developed a Botnet detector, BotMiner, which is independent
of Botnet Command and Control (C&C) protocols and struc-
tures. Gu et al. developed a detection framework that aims to
characterize a Botnet according to the following definition:

A coordinated group of malware instances that are
controlled via C&C channels.

BotMiner sniffs the traffic at the observation point and
conducts two parallel analyses. On one side, it relies on flows
for detecting groups of hosts with similar communication
patterns. On the other side, it inspects packet payloads (via
Snort) in order to detect anomalous activities. These activities
are then clustered together in order to detect groups of hosts
that have similar malicious behavior. In both steps, unsuper-
vised clustering techniques have been used. As the authors
describe, both step are necessary in order to properly identify
possible bots, and a cross correlation phase is performed in
order to merge the results of the previous analyses and extract
meaningful groups of malicious host that form a Botnet. The
approach, which has already been implemented in a working
prototype, shows good detection results. Moreover, it clearly
shows that the problem of Botnet detection is more complex
than the general problem of attack detection. A misbehaving
host, indeed, is not sufficient to indicate the presence of a
Botnet. More sophisticated intra-host communication analysis
is needed to characterize the group nature of Botnets.
Even though Gu et al. [78] and Karasaridis et al. [76]

present better results than Livadas et al. [77] and Strayer
et al. [44], all the contributions clearly show that the problem
of Botnet detection still remains unsolved. This is mainly due
to the subtle and highly dynamic evolution of the Botnets
themselves. Since the research on Botnet identification is still
in its beginning phase, a strong research effort is needed to
develop effective detection procedures. In this regard, flow-

based approaches play an important role.

E. Solutions classification
The intrusion detection taxonomies presented in Section V

allowed us to categorize the state of the art in the field of flow-
based intrusion detection. However, in our specific case, not all
the categories in the taxonomies are relevant to our problem.
For example, network information is the only audit datawe are
interested in, so this category has been omitted from our study.
The detection paradigm (state/transition-based) is applicable
mainly to host-based solutions, and for this reason has also
been discarded. We also have not considered Axelsson’s
security class. Only one of the contributions, indeed, explicitly
addresses the problem of attack resilience [52]. Finally, it is
important to notice that, at the moment, the main research
concern is still on developing flow-based detection engines,
and less effort is put on problems like interoperability of
different instances of the IDS, or between the IDS and other
network components (firewalls, routers...). In our survey, only
a few contributions specifically address this subject, such as
Li et al. [51] and Gao et al. [52].
Table I, which presents our classification, gives some insight

in the current research trends in flow-based intrusion detection.
As it has been for payload-based solution, also in this case, the
anomaly-/misuse-based classes play an important role: we can
see contribution in both fields. Moreover, some researchers,
such as Münz et al. [56], Dübendorfer et al. [69] and Wagner
et al. [70], developed compound methods. This is due to the
interest in joining the strengths of both anomaly and misuse-
based approaches, as well as to the increasing interest in
multi-purpose platforms that offer a shared base for different
detection modules. The work of Gu et al. [78], on the other
hand, is classified as anomaly-based. It indeed uses Snort
only as a complementary source of data, while the entire
detection engine is based on anomaly techniques. On some
occasions [44], [54], [77], the detection approach is unclear
or not specified. This happens when these works address
more general problems than detection, and attack identification
serves only as a possible application. For example, Zhao
et al. [54] are interested in super-sources/destinations as a
more general problem of scan/DoS detection. On the other
hand, Strayer et al. [44] and Livadas et al. [77] do not
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Fig. 8: Time line of evolution of intrusion detection and flow-based technologies.

specify if they aim at modeling either the normal behavior
of IRC conversations or the anomalous one pertaining to
the command-and-control streams. Therefore, it has not been
possible to classify the contribution regarding this category.
By considering the behavior on detection, the focus seems

to be on passive solutions, which complete their task with
the rising of an alert to the network administrator. This also
means that the majority of the solutions heavily rely on human
intervention for attack mitigation and blocking. At the same
time, nevertheless, our classification shows that there is a clear
preference for real-time solutions, which clearly signals the
need for fast responses in flow-based security.
The majority of the contributions rely on centralized data

processing. Flows are a powerful approach to data reduction,
as already pointed out in Section II. In many cases, a stand-
alone machine will have enough processing power to deal
with the flow-data stream. On the other hand, flows are
particularly suitable to be exported towards remote collection
points, making it extremely easy to develop a system based on
distributed data collection points. The majority of the solutions
that we studied assume a single(centralized) collection point
for the ease of analysis, but the authors do not explicitly
exclude the possibility of distributed collection.

VII. CONCLUSION
This paper presented a survey of the state of the art of flow-

based intrusion detection, focusing on the period 2002–2008.
During this time, flow-based techniques attracted the interest
of researchers, especially for analysis of high-speed networks.
The recent spread of 1-10Gbps technologies, and the day by
day increasing network usage and load, have clearly pointed
out that scalability is a growing problem. In this context, flow
based solutions to monitor and, moreover, to detect intrusions
help to solve the problem. They achieve, indeed, data and
processing time reduction, opening the way to high-speed
detection on large infrastructures.
This paper also showed, however, that in some cases the

complete absence of payload should still be perceived as the

main drawback of flow-based approaches. For example, the
use of flow-based techniques makes it very difficult to detect
so-called semantic attacks (see Section VI-A); attacks for
which the disruptive power is in the payload, and which do
not create visible flow variations (bytes, number of packets
or number of flows). Nevertheless, as mentioned in Section
II, flow-based intrusion detection is not meant to substitute
payload-based solutions, but to complement them in situ-
ations where technological constraints make payload-based
techniques infeasible.
Figure 8 shows, in a schematic time line, the evolution

of payload-based intrusion detection, flow-based technologies
and flow-based intrusion detection. Payload-based solutions
constituted the first effort in developing network-based intru-
sion detection. Nevertheless, they are, still today, a meaningful
approach to security. Figure 8 also shows the rise of flow-based
technologies (see Section III). Once flow-based monitoring
became an established technology, we can see how flows
became also a source of data for intrusion detection (see also
Section VI). The paper showed that the major efforts in flow-
based detection concentrate on DoS, scan and worm detection,
while Botnet detection appears to be a more recent research
field.
Figure 8 also identifies some open issues that should be

addressed in future research. First, the emphasis will be
on improving the local detection of threats. An example
would be to extend the current research to the detection of
unsolicited e-mail. For this, as far as we know, only sporadic
flow-based contributions have been proposed [80]. Detection
of SPAM sources would address one of the most serious
issues in our networks, since it has been estimated that the
percentage of SPAM in the first half of 2008 has been 75-
85% [81]. Moreover, Ramachandran et al. [82] estimated
that ∼80% of the spam messages are sent by Botnets. In
our opinion, Botnet detection is the second major research
challenge. Botnet detection will involve long-term analysis of
wide infrastructures as well as integration of multiple detection
methods (Botnets are the source of diverse attacks). Since
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Botnets are naturally spread over multiple networks, a single
monitoring point will probably not be sufficient for detection.
To overcome this problem, a third area for future work is
the development of distributed flow-based detection systems.
Distributed detection is particularly important, also because
the amount of traffic on high-speed network is still increasing,
suggesting that scalability will remain an issue in the future.
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