Hidden Markov Model modeling of SSH brute-force attacks


Nowadays, network load is constantly increasing and high-speed infrastructures (1-10Gbps) are becoming increasingly common. In this context, flow-based intrusion detection has recently become a promising security mechanism. However, since flows do not provide any information on the content of a communication, it also became more difficult to establish a ground truth for flow-based techniques benchmarking. A possible approach to overcome this problem is the usage of synthetic traffic traces where the generation of malicious traffic is driven by models. In this paper, we propose a flow time series model of SSH brute-force attacks based on Hidden Markov Models. Our results show that the model successfully emulates an attacker behavior, generating meaningful flow time series.

20th IEEE/IFIP International Workshop on Distributed Systems: Operation and Management (DSOM 09)