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Abstract—The distribution of malicious hosts over the IP
address space is far from being uniform. In fact, malicious
hosts tend to be concentrated in certain portions of the IP
address space, forming the so-called Bad Neighborhoods. This
phenomenon has been previously exploited to filter Spam by
means of Bad Neighborhood blacklists. In this paper, we evaluate
how much a network administrator can rely upon different Bad
Neighborhood blacklists generated by third-party sources to fight
Spam.

One could expect that Bad Neighborhood blacklists generated
from different sources contain, to a varying degree, disjoint sets
of entries. Therefore, we investigate (i) how specific a blacklist
is to its source, and (ii) whether different blacklists can be
interchangeably used to protect a target from Spam. We analyze
five Bad Neighborhood blacklists generated from real-world
measurements and study their effectiveness in protecting three
production mail servers from Spam. Our findings lead to several
operational considerations on how a network administrator could
best benefit from Bad Neighborhood-based Spam filtering.

I. INTRODUCTION

The distribution of malicious hosts over the IP address
space is far from being uniform. In fact, malicious hosts tend to
be concentrated in certain portions of the IP address space [1]–
[3]. An explanation for this behavior is that networks are
managed differently from each other — and poorly managed
networks are more likely to have more vulnerable hosts than
well managed networks, which would lead to more compro-
mised machines.

In [4], van Wanrooij and Pras exploited this behavior to
build an efficient mail filter, coining the term Internet Bad
Neighborhood. An Internet Bad Neighborhood (BadHood in
the rest of this work) is a netblock or prefix (in CIDR
notation [5]) of a certain size to which a certain number of
misbehaving hosts belong. The idea is that the probability that
a particular IP address behaves badly increases if neighbor
IP addresses (i.e., hosts within the same prefix) behave badly.
Ultimately, this allows to protect a target from any host from
a certain BadHood (prefix) – which can be seen as a form of
predicting new attacking sources, and not only to reacting to
observed /32 sources – which is main benefit of the BadHood
approach, as we have shown in Chapter 2 in one of the authors’
PhD dissertation [6].

In a following research work [7], we focused on identifying
emerging behaviors in BadHoods and also on refining the

BadHood definition to the particular case of Spam. After
that, we investigated how to meaningfully aggregate BadHoods
using network prefixes from /24 to /8 [8].

For our previous studies, we employed real-world avail-
able Internet blacklists. Third-party sources can make their
lists publicly available on the Internet, such as the Passive
Spam Block List (PSBL) [9]. Typically, these lists contain
IP addresses that have been observed conducting malicious
activities [10]. Alternatively, lists can be obtained by means
of private agreements with operators, e.g., ISPs, who keep
track of malicious activities in their networks. In this work, we
refer to such blacklists as raw blacklists. By aggregating the
individual IP addresses in the raw lists to netblocks, BadHood
blacklists can be generated, providing for each /24 netblock
the number of malicious IP addresses.

A raw blacklist can only provide a partial view on the Spam
activities in the Internet since it only contains IP addresses that
have previously contacted the measurement points of the list
provider. Therefore, one could expect that BadHood blacklists
generated from such raw lists contain, to a varying degree,
disjoint sets of BadHood entries. This raises the research
questions we investigate in this paper:

1) How specific is a BadHood blacklist to its measure-
ment points?

2) Can we interchangeably use different BadHood
blacklists to protect a target from Spam?

The motivation for this study is the following: if most of the
BadHoods attacking a target are listed on third-party BadHood
blacklists, then the administrator could effectively protect the
target by using these blacklists in BadHood-based defense
mechanisms. This would allow the administrator to choose
between the available third-party lists, selecting the one which
best suits their requirements, for example, in terms of size and
update-policy. Furthermore, spam filters could switch between
blacklists in case of unavailability of the main blacklist source1

without suffering from performance degradation.

To answer our research questions, we consider five raw
blacklists containing the IP addresses of spamming hosts.
Two lists are public Spam blacklists, generated by distributed
Spam traps. The other lists have been generated from the

1PSBL users experienced a 4-day outage in November 2011 due to bad
weather conditions [9].



Name # Distinct Entries Description
Composite Blocking List (CBL)
[11]

14,344,508 Spam blacklist containing IP addresses that have reached CBL spamtraps,
distributed over different networks and countries. It was used in the following
works: [7], [8], [12]–[14]

Passive Spam Blocking List
(PSBL) [9]

3,528,855 Spam blacklists of IP addresses that have spammed PSBL distributed traps.
Employed in [7], [8]

Provider A 1,668,204 Spam blacklist from mail filter log files of a major hosting provider in the
Netherlands

University of Twente/EWI
(UT/EWI) [15]

429,197 Spam blacklist generated based on mail filter logs of the Electrical Engineering,
Mathematics, and Computer Science Department of the University of Twente

Security Incident Response
Team/RNP – (CAIS/RNP) [16]

36,938 Spam blacklist from the mail filter of CAIS of Brazilian Research Network
(RNP) mail server, employed in [7]

TABLE I. RAW BLACKLISTS EVALUATED

mail server logs of a hosting provider and two organizations.
From these raw lists, we create BadHood blacklists based
on /24 netblock aggregation. Using a simple BadHood-based
Spam detection procedure, we investigate the capability of the
BadHood blacklists to protect target systems from Spam.

The rest of this paper is structured as follows. In Section II,
we present the raw blacklists and we describe how we generate
BadHood blacklists from them. In Section III, we compare
the different BadHood blacklists and study how much they
overlap. The effectiveness of the different lists in detecting
Spam messages is analyzed in Section V. Finally, conclusions
and future work are presented in Section VI.

II. DATA SETS

In this section we describe the data sets used in this paper.
We first present five raw blacklists in Section II-A. We then
aggregate these raw lists into /24 Bad Neighborhood blacklists
in Section II-B.

A. The Raw Blacklists

A large number of public Spam blacklists is available
on the Internet. In this work, we have selected a subset of
these satisfying the following two criteria: (i) the blacklist
has been previously investigated by academic and Internet
security communities; and (ii) the organization hosting the list
provides bulk-access to the blacklist data, to ensure we have
a complete view of the malicious IP addresses. These criteria
led us to choose two widely known Spam blacklists relying
on distributed spam traps, namely the Composite Block List
(CBL [11]) and the Passive Spam Block List (PSBL [9]). The
lists contain the IP addresses of hosts that have sent one or
more Spam messages to their respective traps.

In addition, we have used three blacklists obtained via
private agreement with a Dutch hosting provider (Provider A)
and two organizations, the Computer Science department of
the University of Twente (UT/EWI) [15], and the Security
Incident Response Team of the Brazilian Research Network
(CAIS/RNP) [16]. Differently from public blacklists described
above, these three lists have been generated from the spam
filters logs of single mail servers and, hence, reflect a more
“local” view on Spam activity in the Internet (but not em-
ploying CBL or PSBL in the process). Furthermore, the mail
filter logs allow us to calculate the number of Spam messages
per malicious IP. For the UT/EWI data set, we also obtained
statistics on the number of legitimate messages (Ham).

The considered raw blacklists cover a monitoring period
of one week, from April 19th to April 26th, 2010. Table I
shows more details. As can be seen, the lists differ considerably
in size. CBL has the largest number of entries, followed by
PSBL. In contrast, UT/EWI, and especially CAIS/RNP are
relatively small blacklists. As we can observe, the size of a
blacklist is related to the number of monitoring points deployed
(distributed spam traps vs. individual mail servers). The list
of Provider A takes an intermediate position between the two
public lists and the two institutional lists. We believe that this is
due to the nature of the provider A: as a hosting provider with
thousands of customers, it is much more visible to spammers
than UT/EWI and CAIS/RNP.

B. The Bad Neighborhood Blacklists

The five raw blacklists have been used to generate Bad
Neighborhood blacklists in the following way. We obtain a
BadHood blacklist by aggregating the spammers’ IP addresses
listed in a raw blacklist to /24 BadHoods. As we have discussed
in [8], we have chosen /24 because this is the prefix that incurs
less aggregation error, and it is also the smallest prefix that can
be “routed” on the Internet [17]. For a blacklist source S, we
define its BadHood blacklist LS as

LS = {〈Bi,nHostsS(Bi)〉 , i = 1 . . .nS} (1)

where nS is the number of different /24 IP prefixes we observe
in S, Bi is a /24 IP prefix observed in S, and nHostsS(Bi) is the
number of (spamming) IP addresses in S with prefix Bi. Note
that, by definition, nHostsS(Bi)> 0 for all Bi of LS. Please also
note that a BadHood is not necessarily a Class C network, and,
hence, the number of hosts can be as large as 256.

In Table II we summarize the high-level characteristics of
the BadHood blacklists obtained by the above procedure. The
first row in the table shows the number of entries, i.e., the
number of /24 BadHoods observed by the lists. We can observe
that there is a direct relationship between the size of the raw
blacklists and the size of the BadHood lists: Again, the CBL
list is the largest, followed by PSBL and the other lists.

CBL PSBL Prov. A UT/EWI CAIS/RNP
#BadHoods 1,140,005 732,731 548,866 248,947 34,096
Min(nHosts) 1 1 1 1 1
Max(nHosts) 256 248 227 101 28
Mean(nHosts) 12.58 4.81 3.03 1.72 1.08
Std(nHosts) 29.32 9.44 4.81 1.77 0.44
TABLE II. OVERVIEW ON THE BAD NEIGHBORHOOD BLACKLISTS

BASED ON /24 NETBLOCKS



However, Table II also shows that the number of spamming
IP addresses (nHosts) per Bad Neighborhood significantly
varies among the different lists. Clearly, the CBL list contains
not only the most “malicious” BadHood (with 256 spamming
IP addresses in a /24 netblock; row “Max(nHosts)” in the table)
but it also observes, in average, 2.6 times more spamming
hosts per BadHood than PSBL, 4.1 times more hosts than
Provider A, and this ratio grows to 7.3 for UT/EWI and 11.6
for CAIS (row “Mean(nHosts)” in the table). The numbers
illustrate that there is a high correlation between the average
number of spamming hosts per BadHood and the total number
of spamming hosts observed. The reason for this is the
concentration of spammers in certain parts of the Internet, as
studied in [7]. The more spammers are observed, the higher
the probability that two spammers are located in the same /24
BadHood.

III. COMPARING BADHOOD BLACKLISTS

The goal of this section is to address the first research
question by analyzing the information overlap between differ-
ent BadHood blacklists. We describe the used methodology
and the considered scenario in Section III-A and discuss the
results of the overlap analysis in Section III-B.

The second research question will be answered in Sec-
tion IV, where we study the effectiveness of the different
blacklists for Spam filtering.

A. Methodology and Considered Scenario

In the remainder of the paper, we will consider the scenario
shown in Figure 1. We regard the mail servers of Provider
A, UT/EWI, and CAIS/RNP as targets to be protected from
Spam by using a BadHood blacklist (BL1, BL2, and BLn). As
the administrator of such a target, we have the choice between
the five BadHood blacklists presented in Section II-B. The
blacklist of the target itself will serve as reference because it
contains exactly those BadHoods that have sent Spam to the
target.

We first evaluate to what extent a blacklist LS and the
blacklist LT of the target contain the same BadHoods. To this
purpose, we calculate the intersection blacklist IS∩T which we
define as

IS∩T = {〈B,nHostsS(B),nHostsT (B)〉 | (2)
〈B,nHostsS(B)〉 ∈ LS,

〈B,nHostsT (B)〉 ∈ LT}.

In order to quantify the overlap between the two lists, we
calculate the overlap ratio

vS,T =
|IS∩T |
|LT |

. (3)

Note that we will only compare a target’s BadHood blacklist
with another BadHood blacklist if the latter is larger, i.e.,
we will not compare the UT/EWI BadHood blacklist to the
Provider A target’s BadHood list. Because of the size dif-
ference, the UT/EWI list will, independently of its content,
never achieve a high overlap ratio, and, therefore, would be
uninteresting for the network manager of Provider A.

Fig. 1. Blacklist Sources for Target Protection

In addition, we obtain the BadHoods that have exclusively
attacked S but not T from IrrS,T = LS − (LS ∩LT ) and refer
to them as the entries “irrelevant” to T .

Second, we investigate whether the activity of a BadHood
in the intersection IS∩T , in terms of number of malicious hosts
per BadHood, is perceived differently by S and T and how the
badhoods in the non-intersecting part behave (again, in terms
of number of malicious hosts). This will become important
in Section IV, where we will study a simple spam detection
procedure that flags spams based on the activity of the sender
BadHood.

B. Intersecting BadHood Blacklists

Table III shows the overlap ratios in percents of the five
BadHood blacklists with respect to the BadHood blacklists
of the three targets. One row in the table corresponds to
one target. The numbers in parentheses give the numbers of
BadHoods in the respective intersection blacklists. An overlap
ratio close to 100% indicates the target’s BadHood blacklist is
approximately a subset of the compared BadHood blacklist.

The reported ratios show that the public sources, CBL and
PSBL, capture most of the BadHoods that attack individual
targets (from 88.03% to 98.74%). From the point of view of the
network administrator, this is a very satisfactory result, since it
confirms that such public blacklist sources can be relied upon
to protect the individual targets. Also, the Provider A blacklist
achieves, thanks to its size, high overlap ratios (91.89% and
94.8%) when compared to the UT/EWI and CAIS/RNP. As
expected, the much smaller UT/EWI only yields a low ratio
of 68.3%.

However, this result comes with a price, namely in the
form of irrelevant entries. Table IV shows the number of
irrelevant entries for the five BadHood blacklists and the three
targets as percentages of the number of entries in the targets’
blacklists (the numbers in parentheses give the number of
irrelevant entries). We observe that, even though CBL has
captured 98.74% of Provider A’s BadHoods, CBL has still
observed 598,038 BadHoods that did not spam Provider A’s
mail server — which is more than the size of Provider A’s
BadHood blacklist itself. This means that when applying a
public blacklist source, the network administrator should keep
in mind that, while providing a significant match with the
target, such a blacklist is likely to observe a larger number
of entries that are not observed by the target itself. This can
make the list unsuitable for the use in embedded devices such
as firewalls integrated in routers.



CBL PSBL Provider A UT/EWI
Provider A 98.74% (541,967) 88.03% (483,179) – –

UT/EWI 97.95% (243,855) 93.13% (231,856) 91.89% (228,777) –
CAIS/RNP 99.12% (33,799) 96.88% (33,034) 94.8% (32,347) 68.3% (23,316)

TABLE III. OVERLAPS FOR THE THREE TARGETS (AS RATIOS IN %; NUMBER OF ENTRIES IN PARENTHESES)

CBL PSBL Provider A UT/EWI
Provider A 108.95% (598,038) 45.46% (249,552) – –

UT/EWI 359.97% (896,150) 201.19% (500,875) 319,889 (128,49%) –
CAIS/RNP 3,244.38% (1,106,206) 2052.13% (699,697) 516,519 (1,514.89%) 225,631 (661,75%)

TABLE IV. IRRELEVANT ENTRIES FOR THE THREE TARGETS (AS RATIOS IN %; NUMBER OF ENTRIES IN PARENTHESES)

Finally, we analyze how the activity of the same BadHood,
in terms of number of malicious hosts, is perceived by a
target and by a third-party BadHood blacklist source. Figure 2
shows for all BadHoods in the intersection ICBL∩ProviderA the
number of spamming hosts monitored by CBL (x-axis) and
monitored by Provider A (y-axis). As expected, the much
larger CBL blacklist sees more hosts for the same BadHood
than Provider A. This phenomenon has been already discussed
in Section II-B.

In Figure 3(a), we show the histogram of the number
of hosts per BadHood for the BadHoods in the intersection
ICBL∩ProviderA, as monitored by CBL and by Provider A. The
histogram for the “irrelevant” BadHoods in CBL − (CBL ∩
ProviderA) are shown in Figure 3(b). We observe that the
blacklist of Provider A, also much smaller, already contains
the most malicious BadHoods of the CBL list. The BadHoods
not seen by Provider A, i.e., those in the set CBL− (CBL∩
ProviderA), do not show much activity (in terms of number
of malicious hosts). Hence, if an administrator had to choose
between the CBL list and the Provider A list, one could argue
that the latter contains more valuable information relative to
its size. A similar observation can be made when using the
PSBL list instead of the CBL list (Figures 3(c) and 3(d)).
For the UT/EWI target (Figure 4), the effect is weaker but
still present: the intersection sets contain more highly active
BadHoods than the irrelevant sets. Noteworthy, this is not true
anymore for CAIS/RNP (Figure 5). This is due to the fact that
the blacklist of CAIS/RNP is so small that is is outperformed
by the larger lists.

Fig. 2. Activity of BadHoods, as perceived by Provider A and CBL
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Fig. 3. Histogram of the number of hosts per BadHood for Provider A

IV. EFFECTIVENESS ON DETECTING SPAM

We have learned in the previous section that, for the
majority of the cases (9 out of 11), there is a significant
overlap between BadHood blacklists (> 90% w.r.t the smaller
of the two). These results suggest that we can employ BadHood
blacklist from various sources to detect Spam. Therefore, in
this section, we evaluate the effectiveness of the third-party
BadHood blacklists on Spam detection by employing them to
protect three distinct targets (mail servers).In [4], the authors
have also filtered e-mail employing third-party blacklists. How-
ever, they combine several blacklists and only evaluate a small
data set (< 5k messages), for a single day and a single source.
We have evaluated the third-party blacklists individually, and
tested it against several sources, which allowed us to analyze
more than 1M messages for several days.

We first describe our methodology and the considered
scenario in Section IV-A, followed by a discussion of the
achieved results in Section IV-B.

A. Methodology and Considered Scenario

In [4], the authors have presented an approach for Spam
filtering based on analyzing the origin of e-mail messages and
the URL’s within the messages to malicious websites. One
of the criteria used in their approach is whether the number
of malicious hosts in the origin BadHood of the e-mail is
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Fig. 4. Histogram of the number of hosts per BadHood for UT/EWI

above a certain threshold. Similar to our work, the authors used
publicly available blacklists to build the list of BadHoods.

To evaluate how the individual BadHood blacklists perform
in detecting Spam, we propose for the following experiments a
simple Spam detection system that implements the threshold-
based criterion described above. It should be emphasized that
a real-world BadHood-based mail filter, like the one in [4],
should combine different techniques, including whitelisting, in
order to optimize the overall detection performance.

Consider LS as the BadHood blacklist to be used for Spam
detection. Whenever a new message M arrives, the mail filter
extracts the source /24 prefix address of the sender (M/24) and
checks it against the list LS. If M/24 is found in LS, then the
mail filter will classify the message as Spam if nHosts(M/24)>
θ, where θ (0 ≤ θ <= 2562) can be seen as a threshold on
how malicious a BadHood is. This procedure is summarized
in Algorithm 1.

To evaluate the effectiveness of the different BadHood
blacklists, we split each data set into a training data set of
seven full days (April 19th to April 25th) and a test set of 1
day (April 26th). The resulting five training sets will then be
used to build training blacklists as described in Section II-B.
Table V shows the number of malicious hosts (distinct /32

2A /24 prefix can have up to 256 malicious IP addresses depending on
how addresses are allocated. E.g., if an ISP allocates addresses as /22, as in
130.89.10.0/22 (which covers the /32 addresses 130.89.8.0 — 130.89.11.255),
the addresses 130.89.10.255 and 130.89.10.0 are valid “routable” IP addresses.
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Fig. 5. Histogram of the number of hosts per BadHood for CAIS-RNP

hosts), and the number of BadHoods in each training data set.

We then employ the training blacklists to protect the mail
servers of Provider A, UT/EWI, and CAIS/RNP from Spam
(as in Figure 1). We apply Algorithm 1 to each target T for
different values of θ and for the different training blacklists

Algorithm 1 Spam detection procedure used in the experiments
Input: LS = {〈Bi,nHostsS(Bi)〉 , i = 1 . . .nS}
Input: θ
Input: M/24
Output: true, if spam detected; false, otherwise

1: if M/24 ∈ LS and nHostsS(M/24)> θ then
2: return true
3: else
4: return false
5: end if



Dataset # /32 IPs # /24 BadHoods
CBL 13,668,909 1,123,492
PSBL 3,301,159 714,466

Provider A 1,498,991 522,522
UT/EWI 377,571 228,445

CAIS/RNP 31,012 28,883
TABLE V. TRAINING DATA SETS, APRIL 19TH–25TH, 2010

Dataset # /32 IPs # /24 BadHoods # Spam
Provider A 296,596 206,980 879,856

UT/EWI 68,748 59,739 221,179
CAIS/RNP 6,447 6,314 13,187

Dataset # /32 IPs # /24 Hoods # Ham
HAM: UT/EWI 1,540 978 7,950

TABLE VI. TEST DATA SETS, APRIL 26TH, 2010

LS. For each mail in the test set of the target, the algorithm
has to decide whether the mail should be flagged as Spam or
not. The achieved Spam detection rate rS,T (θ) is defined as

rS,T (θ) =
number of Spam mails detected

total number of Spam mails received by T
. (4)

The total number of Spam mails received by the different
targets on the test day are shown in the first three rows of
Table VI. The table also gives the number of spammers (/32
IP addresses) and the number of observed BadHoods on that
day. For UT/EWI, we also have the number of Ham messages
received, as shown in the fourth row of the table.

B. Experimental Results and Discussion

Figures 6(a), 6(b), and 6(c) show the results (in percent)
for detecting the Spam directed to Provider A, UT/EWI, and
CAIS/RNP, respectively, as function of the threshold θ, using
the different training blacklists. Again (see Section III-A), we
have only used a training blacklist if it is larger than the target’s
training blacklist (e.g., we have not applied the UT/EWI list
to the Provider A target).

The figures indicate that it is possible to effectively detect
Spam messages based on the different BadHood blacklists.
This is especially true for large blacklists, like CBL, which
always provides the best detection rate. However, and espe-
cially for the smaller lists, the figures also show that the rate
decreases fast with increasing values of θ, a fact that most
likely is due to the presence of high-volume spammers in the
data sets.

A second insight provided by these results is that the value
of θ should be adjusted to the considered BadHood blacklist.
For the same θ, the detection rate changes considerably among
BadHood blacklists. At first sight, this seems to suggest that
the best choice for an administrator is the largest BadHood
blacklist, just due to the fact that it has observed a higher
number of spamming hosts. However, large BadHood black-
lists might suffer of drawbacks like a high number of irrelevant
entries, as indicated in Section III-B.

Considering this fact, we then investigate if smaller
BadHoods blacklists can still potentially provide similar detec-
tion rates if the threshold θ is chosen appropriately. Let θCBL
be the threshold that we have used to calculate the detection
rate for the CBL training blacklist (the biggest in our data set).
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We choose the threshold θS for the training list LS as

θS = θCBL ·
∑Bi∈ICBL∩S nHostsCBL(Bi)

∑Bi∈ICBL∩S nHostsS(Bi)
(5)

For example, instead of comparing the detection rate be-
tween the CBL and PSBL lists for θ = 100 to a particular
target T , we then can use θCBL = 100 for the CBL list
and θPSBL = 100

4.14 = 22.6 for the PSBL list because the latter
contains 4.14 times less IP addresses than the CBL list. In
this way, we compensate the fact that PSBL has, in average,
observed less malicious hosts than CBL.

In Figures 6(d), 6(e), and 6(f), we present the detection
rates obtained for the different targets using the rescaled θ
defined in Eq. (5). For the CBL list, the threshold as indicated
on the x-axis is used. For the other lists, we compute the
rescaled theta according to Eq. (5).

The figures show that, once the size factor is removed by
using Eq. (5), all the considered BadHood blacklists detect
Spam with comparable performance for a wide range of θ,
although the CBL list still provides the best results when
the whole lists (θ = 0) are used. The only exception is the
CAIS/RNP list which only achieves detection rates below 20%,
due to its small size (see Figure 6(f)). These results therefore
indicate that Eq. (5) offers an operational way for choosing
values of θ for different blacklists such that the blacklists
are similarly effective in identifying Spam. In fact, one may
be tempted to conclude from these results that all blacklists
perform similarly independently of their size.

However, a different picture is obtained when calculating
the number of legitimate mail traffic erroneously flagged as
Spam – that is, the number of false positives. Figure 7 shows
the percentage of legitimate mail messages received by the
mail server of UT/EWI that are labeled as Spam for varying
values of the scaled threshold θ. While for CBL and PSBL
the percentages of blocked Ham is less than 5% and rapidly
falls to zero, for UT/EWI and Provider A we observe that up
to approximately 60% of legitimate mail would be labeled as
Spam if a very low value of θ is chosen. On the other hand,
also in the case of Provider A and UT/EWI, the percentage of
blocked Ham is decreasing rapidly for increasing values of θ.

Our results highlight therefore a trade-off between (i) the
size of the blacklist, (ii) the Spam detection rate and (iii) the
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Fig. 6. Spam detection rate for varying values of the threshold θ in Fig. (a)-(c) and the scaled threshold in Fig.(d)-(f)

percentage of blocked Ham. Very large lists, such as CBL
and PSBL, achieve a high Spam detection rate with a low
percentage of blocked Ham but contain a large number of
irrelevant entries. In contrast, small and mid-sized lists, that is,
Provider A and UT/EWI, contain much less irrelevant entries
and can achieve detection rates comparable to those of the
larger lists. However, for θ < 100, a relatively high number of
false positives can be expected.

V. RELATED WORK

We have seen in the literature several research works fo-
cusing on the concentration of malicious hosts on the Internet.
Ramachandran and Feamster have investigated the network
level behavior of spammers in [1], by showing that most of
spam comes from a few concentrated part of IP address space
(IPv4). Collins et. al [2], on the other hand, have defined the
concept of uncleanliness, which “works as an indicator for
how likely the network is to contain compromised hosts”. DNS
blacklists [10], such as [9], [11], [18], also suggest the same
concentration.

Taking these observation in consideration, the Bad Neigh-
borhood concept was introduced in [4]. In that study, the
authors have developed a mail filter that employed Spam
BadHoods to tell whether a message is Spam or not. They
have proposed a combination of several rules to classify a
message based on characteristics of the message itself, among
which the most closely related to our work are (i) the number
of different BadHood blacklist containing the IP address and
(ii) the number of Hosts for the /24 subnet. In [4], the authors
have used as threshold for the number of hosts in a /24 block
values equal to 2, 12, and 24. In our work, we have investigated
in Section IV how the detection rate varies accordingly to the
number of hosts (θ), for the whole interval (0 ≤ θ < 256). In

addition, we have proposed and evaluated a scaled value for
θ, which considers the size of the BadHood blacklists.

In [19], Soldo et. al have employed a recommendation
system to predict /24 prefixes that were likely to attack
“neighboring” targets (or victim networks). The authors have
evaluated the D-Shield data set [20], a community-shared fire-
wall log system, and employed a neighborhood model (popular
approach in recommendation systems) to predict attack sources
by “trusting similar peers” [19]. Our BadHood definition is not
a recommendation system technique and it is defined in terms
of neighboring sources of attacks – and not on neighboring
targets. Moreover, the authors do not differentiated BadHoods
according to the application used in the attack, while we
consider application-tailored BadHoods.

Taking the previous studies into account, we have investi-
gated in [7] the specifics of Spamming BadHoods. We have
proposed four definitions for Spamming BadHoods, each of
them addressing a particular part of the “Spam picture”. We
have found that botnets (and individual bots) are responsible
for most of Spam; however we cannot neglect the impact of
massive Spamming BadHoods – that is, BadHoods that have
been observed having very few spamming hosts which have
sent a large number of spam messages.

In [8], we have proposed and evaluated two IP-based tech-
niques to aggregate malicious hosts into network prefixes other
than /24 (from /24 to /8). We have found that BadHood can be
viably aggregated into smaller prefixes; however, the smaller
the prefix, the larger the aggregation error. This result allowed
us to provide meaningful feedback to network administrators
wishing to make use of BadHood-based filtering.



VI. CONCLUSIONS

In this paper we have evaluated the effectiveness of third-
party BadHood blacklists to protect a target system from Spam.
In particular, we have investigated if and to what extend
a BadHood blacklist is specific to its source and whether
a network administrator can interchangeably use different
third-party BadHood blacklists to detect Spam messages. We
have conducted our analysis using five BadHood blacklists
generated from third-party sources.

We observe a significant overlap between the third-party
BadHood blacklists. This is particularly true for large, public
blacklists such as CBL and PSBL, which cover up to 99% of
the BadHoods spamming the targets. Our research also shows
that this intersection captures the most aggressive BadHoods
(in terms of number of malicious hosts). However, we also
found that large blacklists also contain a large number of
“irrelevant” entries, which are BadHoods not observed by the
target itself. Such extra entries might impose a burden if used
in resource-restricted security mechanisms, such as firewalls.

Based on the high overlapping observed, we have therefore
applied BadHood blacklists to Spam detection. For this, we
have evaluated, for each individual blacklist, the performance
of a simple BadHood-based mail filter that takes into account
the number of malicious hosts in the BadHood from which
a message originates. We have found that the largest lists
provide the best detection rates. However, the results from
smaller lists can be significantly improved if the detection
threshold is properly chosen. We therefore provide an op-
erational way to adjust the detection threshold according to
the BadHood blacklist size. However, we also show that the
choice of the detection threshold might cause a high percentage
of misclassified legitimate mail messages (false positives),
especially for smaller blacklists. Therefore, when deploying
a BadHood-enhanced Spam filter, a network administrator
should be aware of the trade-off among the BadHood blacklist
size, the Spam detection rate, and the percentage of blocked
legitimate messages in the case of medium to small BadHood
blacklists.

As future work, we will investigate if the attacks to distinct
applications are carried by a same set of Internet BadHoods. In
addition, we will analyze how Internet BadHoods change over
time to be able to predict attacks from unobserved BadHoods
based on its neighbors behavior.
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