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Abstract—Internet Bad Neighborhoods have proven to be an

innovative approach for fighting spam. They have also helped

to understand how spammers are distributed on the Internet.

In our previous works, the size of each bad neighborhood was

fixed to a /24 subnetwork. In this paper, however, we investigate

if it is feasible to aggregate Internet bad neighborhoods not

only at /24, but to any network prefix. To do that, we propose

two different aggregation strategies: fixed prefix and variable

prefix. The motivation for doing that is to reduce the number

of entries in the bad neighborhood list, thus reducing memory

storage requirements for intrusion detection solutions. We also

introduce two error measures that allow to quantify how much

error was incurred by the aggregation process. An evaluation of

both strategies was conducted by analyzing real world data in

our aggregation prototype.

I. INTRODUCTION

Malicious hosts are not evenly distributed on the Internet,
but they tend to be concentrated in certain subnetworks
[1]–[3]. The rationale behind this observed behavior is that
different subnetworks have different security policies, and
poorly managed subnetworks tend to let their hosts more
vulnerable than hosts belonging to well managed networks.
In [4], van Wanrooij and Pras investigated how to exploit this
behavior to enhance spam filters and introduced the Internet
Bad Neighborhood concept. An Internet Bad Neighborhood
(BadHood in the rest of this work) is a netblock1 of a certain
size to which a certain number of misbehaving hosts belong.
The idea behind BadHoods is that the probability that a
specific IP address behaves badly increases if neighbor IP
addresses, i.e., hosts within the same netblock, behave badly.

In a previous research work [5], we have addressed Spam-
ming Bad Neighborhoods, identifying emerging behaviors
from the analysis of spamming netblocks. Badhoods have
proven to be a meaningful approach to characterize the be-
havior of a large portion of the address space, and one of
their possible application is in the creation of blacklists, i.e.,
lists of IP addresses (or, in our case, netblocks) that are likely
to be involved in malicious activities. The same reasoning can
be extended to other types of malicious attacks/applications,
such as phishing, Distributed Denial of Service (DDoS), and
SSH brute force attacks.

1By “netblock” we mean here a set of IP addresses sharing the same prefix.

In both previous research works [4], [5], Spamming
BadHoods were evaluated only under a single fixed block
size, i.e., we considered BadHoods consisting of a single /24
block (254 /32 hosts). We have initially chosen to employ
/24 because it is the “minimum prefix size which is generally
routable on the Internet” [6]. Even though the /24 prefix has
proven effective for spam filtering and to identify Spamming
BadHood behaviors, there might be cases in which some
BadHoods can be aggregated into larger netblock sizes.

The motivation for doing it is that using larger blocks would
reduce the number of entries in a BadHood blacklist. This
principle is analogous to the reduction of entries in routing
tables when Classless Inter-Domain Routing (CIDR) [7] was
introduced. If Internet BadHoods-based defense mechanisms
are supposed to operate efficiently in real-time, the aggregation
of entries would reduce memory storage requirements and
the look-up time on the BadHood blacklists. To give an idea
of the problem, current /24 Spamming BadHoods may have
more than one million entries, while Border Gateway Protocol
(BGP) routing tables [8] have no more than 385k entries [9].

To better illustrate the concept of aggregation of Internet
BadHoods, take as example the crime rate reports of the Police
Department of a city such as New York [10]. Consider that
the Police department has security policies for neighborhoods
(or “precinct”, term used by the police) that vary according to
their respective crime rates. Also, consider two neighboring
precincts: the 26th and 28th, from the Manhattan North,
having different security policies. If these two were, then,
found having similar crime rates, would it not be useful
to consider them as a single “bigger” precint and employ
the same policy for both, thus simplifying the management?
The same reasoning applies to Internet BadHoods. BadHoods
exhibiting similar behavior can be aggregated and managed in
the same way.

In this paper, we investigate (i) how to meaningfully ag-
gregate BadHoods with prefixes other than /24, and (ii) what
is the effect of the aggregation on the precision of the result-
ing BadHoods. We propose and evaluate two approaches to
BadHoods aggregation. Firstly, we assess the impact of a fixed
prefix aggregation strategy, which produces blacklists in which
all the BadHoods have the same prefix, and consequently
the same size. After that, we evaluate the variable prefix
aggregation strategy, in which BadHoods of different sizes978-1-4673-0269-2/12/$31.00 c� 2012 IEEE



coexist in the same blacklist. Real world security data is
employed in the evaluation of both strategies, which is done
by showing both the gain in blacklist size reduction, as well
as the precision of the resulting blacklists.

The organization of this paper is as follows. In Section II
we introduce the metrics that are employed to evaluate each
BadHood during the aggregation process. Next, in Section III,
we present the strategies for aggregating Internet BadHoods.
Following that, in Section IV we evaluate those strategies by
using real world data. The related work is then presented on
Section V, and the summary and conclusions are shown in
Section VI.

II. BADHOODS EVILNESS METRICS

Typical data for defining Bad Neighborhoods are lists of
IP addresses which have been flagged as sources of mali-
cious activities [5]. They can be obtained from defense and
monitoring mechanisms, such as intrusion detection systems
(IDSs) [11], [12] or honeypots. In some cases, third parties
provide blacklists containing IP addresses of malicious hosts.
A major example in this case are DNS Blacklists [13],
built by harvesting spamming IP addresses using spamtraps
(specialized honeypots to collect spam) distributed over dif-
ferent domains. Examples include SBL [3], CBL [14], and
PSBL [15]. The same applies to Phishing URL data sources,
such as the list provided by PhishTank [16] and for SSH brute-
force blacklists, such as SSHBL.org [17].

Given a list of malicious IP addresses (/32), we define a
/n BadHood (in CIDR prefix notation [7]) as a /n netblock
An with a score score(An), where the score is the number of
malicious hosts in the block:

score(An) = #{malicious hosts in block An} (1)

In [5], we created /24 BadHoods employing different spam-
mers data sources. As in the previous work, in this one we also
begin with this aggregation level since a /24 is the minimum
prefix “routable on the Internet” [6]. Table I provides a short
example of /24 BadHoods.

# /24 netblock Score

1 10.10.10.0 22
2 10.10.11.0 21
3 10.10.12.0 20
4 10.10.13.0 41
5 20.20.24.0 130
6 20.20.25.0 1
7 30.30.34.0 60

TABLE I
EXAMPLE OF /24 BADHOODS AND THEIR SCORES

The score value leads to an intuitive definition of the
“evilness” of a netblock: the higher the score, the higher the
probability that a single host address (/32) from the /24 block
is a source of malicious activities. However, the score depends
on the size of the block. Therefore, it is useful to have a
normalized measure of evilness regardless the block size. Let

An be a netblock of size /n with score score(An). We define
the infection rate of An as

pn(An) =
score(An)

max hosts(An)
, (2)

where max hosts(An) = 232−n is the maximum number of IP
addresses in a /n netblock (neglecting the addresses reserved
for broadcast and network identification).

In the next section we present the aggregation strategies and
how these metrics are employed in the aggregation process.

III. INTERNET BADHOODS AGGREGATION STRATEGIES

In this section, we describe how /24 BadHoods can be
aggregated into larger BadHoods blocks (or smaller prefixes).
We begin by introducing the aggregation operation in Sec-
tion III-A, which formalizes the process of merging two /n
BadHoods into one (/n−1) BadHood.

Based on this operation, we then present two iterative strate-
gies to aggregate a complete list of /24 BadHoods. The first
strategy increases in each iteration the size of the BadHoods by
a factor of two by merging adjacent BadHoods. We refer to this
aggregation strategy as fixed prefix aggregation and present it
in Section III-B. This strategy can considerably reduce the
number of BadHoods but also decreases the precision of the
resulting BadHood list. To overcome this issue, we investigate
a variable prefix aggregation strategy in Section III-C. In
contrast to the first strategy, this strategy merges adjacent
BadHoods only if they fulfill the proposed merging condition.

A. The Basic Aggregation Operation

Given two /n BadHoods An and Bn can be aggregated into
the /(n−1) BadHood An ⊕Bn if An and Bn have a common
address prefix of n−1 bits. The aggregated BadHood An⊕Bn

spans the IP addresses of An and Bn. For example, in Table
I, blocks #1 and #2 can be aggregated from /24 to /23, while
blocks #1 and #7 can not.

Consequently, the infection rate of the aggregated BadHood
An ⊕Bn is as follows:

pn−1(An⊕Bn) =
score(An)+ score(Bn)

max hosts(An ⊕Bn)
=

1
2
(pn(A)+ pn(B)) .

(3)

B. Fixed Prefix Aggregation Strategy

The fixed prefix aggregation strategy iteratively aggregates
BadHoods to larger netblocks. In the first iteration, all /24
BadHoods are aggregated to /23 BadHoods according to the
aggregation operation defined in the previous subsection. For
example, the /24 BadHoods provided in Table I will be
aggregated into the /23 BadHoods shown in Table II. In the
next iteration the /23 BadHoods are aggregated to /22 ones,
and so on.

It is important to note that, in this strategy, we always aggre-
gate BadHoods: BadHoods that have no “partner” BadHood
to be aggregated with are aggregated with an empty netblock,
i.e., with a netblock of score 0 (as defined in Equation (1)).



# /23 netblock score

1 10.10.10.0/23 43
2 10.10.12.0/23 61
3 20.20.24.0/23 131
4 30.30.34.0/23 60

TABLE II
/23 BADHOODS RESULTING FROM FIXED PREFIX AGGREGATION

In our example, the /24 BadHood 30.30.34.0 in Table I is
aggregated with the zero-score netblock 30.30.35.0.

Algorithm 1 presents the pseudocode for this strategy. The
algorithm takes as input the initial list S24 of /24 netblocks
B24

i with score(B24
i ) and the largest desired aggregation level

m. In each iteration (line 1), the algorithm builds the list Sn−1
of /(n− 1) BadHoods by merging all pairs of /n BadHoods
Bn

i ,B
n
j according to the basic aggregation operation given in

Section III-A (lines 3–5). Empty netblocks are included if no
matching BadHood is found for aggregation (line 3).

Algorithm 1 Fixed prefix aggregation
Input: S24 = {(B24

i ,score(B24
i )), i = 1 . . .num entries}

Input: largest aggregation level m
Output: Sm

1: for n = 24 → m+1 do

2: Sn−1 := /0
3: for all Bn

i ,B
n
j ∈ Sn, i �= j with common n−1 prefix (use

an empty netblock if no matching Bn
j found) do

4: Sn−1 := Sn−1 ∪{(Bn
i ⊕Bn

j ,score(Bn
i ⊕Bn

j))}
5: end for

6: end for

The fixed prefix aggregation strategy effectively reduces the
number of BadHoods in each iteration because it progressively
builds larger netblocks regardless their scores. However, this
simple approach also exhibits some drawbacks. First, aggre-
gating two BadHoods with infection rates a and b will result
in a BadHood with an infection rate of a+b

2 . The larger the
difference between a and b, the more information about the
behavior of the individual /24 BadHoods in the aggregated
BadHood is lost. Secondly, enlarging the BadHoods can have
the side effect of including also netblocks that were not
initially flagged as malicious, as already illustrated in our
example by the netblock 30.30.35.0. This effect aggravates
with each iteration. This

C. Variable Prefix Aggregation Strategy
Differently from the fixed prefix aggregation strategy, our

next strategy does not apply the same degree of aggregation
to all BadHoods. Instead, the main idea is to merge two
BadHoods only if they satisfy a merging condition. Intuitively,
the merging condition should ensure that the BadHoods to
be merged are sufficiently similar and, hence, the aggregated
BadHood is, to some extend, representative for them.

Algorithm 2 presents the pseudocode for the proposed
aggregation strategy. As in the previous strategy, the algorithm

takes as input the initial list S24 of /24 netblocks B24
i with

score(B24
i ) and the largest desired aggregation level m. Then,

for each aggregation level n (line 2), the algorithm merges
all /n BadHoods Bn

i ,B
n
j which would form a valid aggregated

BadHood according to the basic aggregation operation (see
Section III-A) that satisfy the merging condition (line 3).
BadHoods that do not fulfill those conditions are not aggre-
gated and therefore not considered further for aggregation in
this or the next iterations.

Algorithm 2 Variable prefix aggregation
Input: S24 = {(B24

i ,score(B24
i )), i = 1 . . .num entries}

Input: largest aggregation level m
Input: merging condition parameter β
Output: S

1: S := S24
2: for n = 24 → m+1 do

3: for all Bn
i ,B

n
j ∈ S, i �= j with common n − 1 prefix

∧ merge(An,Bn) do

4: S := S \ {(Bn
i ,score(Bn

i )),(B
n
j ,score(Bn

j))} ∪ {(Bn
i ⊕

Bn
j ,score(Bn

i ⊕Bn
j))}

5: end for

6: end for

The merging condition is defined as

merge(An,Bn) = pn−1(An ⊕Bn)≥ β ·max(pn(A), pn(B)). (4)

The condition is such that we allow a merge only if the
resulting infection rate pn−1(An ⊕Bn) is at least equal to a
fraction β of the most malicious of the blocks to be merged.
The parameter β prevents therefore the aggregation strategy
from merging dissimilar BadHoods. This value can be tuned
according to the scenario and application. β ranges between
0.5 and 1.0: smaller values make the aggregation less strict,
thus allowing more BadHoods to be merged. Values close to
1 will instead lead to a less permissive aggregation strategy.

Finally, at line 4, the algorithm progressively builds the
new BadHood set by removing BadHoods and replacing them
with the merged one. Note that, in contrast to the fixed prefix
aggregation strategy, now BadHoods of different sizes coexist
in the result set S.

In order to illustrate the strategy, we apply it to the example
given in Table I. For β = 0.8, we obtain after one iteration the
BadHoods shown in Table III. Blocks #1 and #2 are merged,
because p24(#1) = 22

254 , p24(#2) = 21
254 , and p23(#1+#2) = 43

510 ,
so p(#1 + #2) > 0.8 · max(·) ⇒ 0.086 > 0.069. The other
blocks, on the other hand, do not match the condition, so they
are not aggregated. After the first iteration, the list contains
both /23 and /24 entries. In the next iterations, no further
aggregation occurs, and the final result contains entries using
mixed prefixes (/23 and /24).

Comparing the results of both strategies (Tables II and III),
the output of the variable prefix strategy has more entries.
However, the blocks aggregated by the variable prefix strategy
have been matched against a stricter merging criteria. In the
next section we evaluate both strategies using real world data.



# /23 netblock score

1 10.10.10.0/23 43
2 10.10.12.0/24 20
3 10.10.13.0/24 41
4 20.20.24.0/24 130
5 20.20.25.0/24 1
6 30.30.34.0/24 60

TABLE III
BADHOODS RESULTING FROM VARIABLE PREFIX AGGREGATION

Finally, it should be noted that the above algorithms can be
efficiently implemented without employing set operations. In
our Java prototype, we have observed runtimes of less than 10
seconds even for very large input files ( > 1M entries).

IV. AGGREGATION STRATEGIES EVALUATION

The main benefit of aggregating Internet BadHoods is to
reduce the number of lines in the original BadHood blacklist.
However, this reduction comes with a price: hosts belonging
to aggregated netblocks might be seen as more or less mali-
cious than what was observed before the aggregation. In this
section we evaluate and analyze the impact of the aggregation
strategies.

We firstly present the data sets that we use for our evaluation
in Section IV-A. Then, we introduce the performance metrics
that we use to evaluate the strategies in Section IV-B. The
performance of both strategies is compared for the largest of
our datasets, the Composite Blocking List (CBL; see below),
in Section IV-C. In Section IV-D, we study the impact of
the merging parameter β on the performance of the variable
prefix aggregation strategy. Finally, we compare the results for
different datasets in Section IV-E.

A. BadHood Input Blacklists

We evaluate our aggregation strategies on the real case of
a Spam blacklist. The considered data set is the Composite
Blocking List (CBL) [14] – an online Spam DNS blacklist.
CBL maintains four large spamtrap infrastructures from where
the source IP addresses of spammers are harvested. We have
obtained the list for the April 28th, 2010. On this day, CBL
listed 8,177,138 /32 IP addresses, which resulted in an initial
blacklist of 960,167 /24 BadHoods, as explained in Section II.

In addition to the above list, we use the following datasets
for our experiments in Section IV-E:

• Passive Spam Block List (PSBL) (2010) [15], obtained
on April 28th, 2010: the list consists of more than 2.8M
/32 distinct IP addresses;

• Passive Spam Block List (PSBL) (2011) [15], obtained on
October 24th, 2011: the list consists of more than 283K
/32 distinct IP addresses;

• Mail server logs from Provider A: Provider A is a major
hosting provider in the Netherlands. We have obtained
the IP addresses of spammers on April 28th, 2010. For
this day, 256K distinct /32 IP addresses were observed.

B. BadHood Aggregation Performance Metrics
Our main aggregation performance metric of interest is

clearly the reduction achieved by the strategies in terms of
number of entries in the initial BadHood input list. We measure
it as the difference between the number of entries (also called
“lines” in the following) in the initial /24 BadHood list and in
the resulting list generated by the algorithms in Section III.

As already mentioned previously, the achieved reduction
comes along with a loss of information on the behavior of the
individual /24 BadHoods. Consider as an example an applica-
tion, such as a Spam filter, that relies on the aggregated lists.
Let be {X24,Y 24, . . .} a set of /24 BadHoods with infection
rates {p24(X24), p24(Y 24), . . .}. We can interpret p24(X24) as
the probability that a particular IP address in block X24 be a
source of malicious activities. After we have aggregated the
/24 BadHoods to a /n BadHood An, with n < 24, only the
infection rate pn(An) of the aggregated BadHood is available
to the application. The “evilness” of a particular IP address
in Xn can now only be estimated by pn(An) (Equation (2)).
Consequently, we define the error err(X24) introduced by the
aggregation for the BadHood X24 as

err(X24) = pn(An)− p24(X24). (5)

A positive (negative) error indicates that the application would
overestimate (underestimate) the evilness of X24 after the
aggregation. To assess the global error for a whole blacklist,
we sum up the absolute errors for each /24 BadHood X24:

Errabs = ∑ |err(X24)| (6)

Alternatively, we sum the squares of the individual errors:

Errsquare = ∑err(X24)2 (7)

To illustrate how they are calculated, consider block #1
in Table II. Before being aggregated into a /23 BadHood,
the infection rate p(#1) was 22

256 (Table I). After that, the
same netblock gets the mean value 43

512 . The error err(#1)
introduced is therefore, 22

256 −
43
512 =−0.0019. After calculating

the individual errors, the global errors, as defined in Eq. (6)
and (7), can be obtained.

The interpretation of the error values depends on the appli-
cation and other definitions of the global errors are possible.
For example, for an intrusion detection system, large error
measures may cause increased False Positive or False Negative
rates. In such scenario, calculating the global errors separately
for positive and negative err(X24) values could be of interest.
In order to be independent from a particular application and
suitable for different scenarios, we have chosen the rather
flexible definitions in Eq. (6) and (7).

C. Performance of the Aggregation Strategies
In this section, we present the results of the aggregation

strategies applied to the CBL data set. We first analyze
the reduction on the size of the blacklist as result of the
aggregation. Then, we discuss the impact of the aggregation
strategies on the global errors, as defined in Section IV-B.
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Fig. 2. Variable prefix aggregation strategy

1) Blacklist size: Figures 1(a) shows the number of entries
(in thousands) in the result blacklists as function of the
aggregation level m for the fixed prefix aggregation strategy,
while Figure 2(a) shows it for the variable prefix aggregation
strategy. For the later, we have chosen a rather moderate
merging parameter of β = 0.8. The influence of the parameter
is discussed in Section IV-D.

As expected, both strategies are able to reduce the number
of entries of the initial input blacklist. If compared, however,
we can see that their performance is very dissimilar. The
fixed prefix strategy progressively aggregates listed BadHoods
into larger netblocks, regardless of their scores and infection
rates. As a result the number of entries decreases with the
aggregation level, i.e., with increasing block sizes.

The variable prefix strategy, on the other hand, only ag-
gregates blocks that meet the merging condition specified in
Eq. (4). As a result, once no more candidate blocks satisfy the
condition, the number of entries in the blacklist stabilizes. As

can be seen in Figure 2(a) we observe that there is no more
aggregation after /15 prefix. Indeed, most of the aggregation
is achieved when moving from level /24 to /23. Hence, the
variable prefix aggregation can be seen as a “less aggressive”
approach than the fixed prefix one. While the fixed prefix
strategy reduces the blacklist, from the original 960,167 /24
BadHoods to 162 entries for /8, the variable prefix strategy
stabilizes at around 711K entries.

2) Error: Figures 1(a) and 2(a) also show the global
absolute errors (see Eq. (6)) for the two strategies as function
of the aggregation level. The results for the global square
errors (see Eq. (7)) are shown in Figures 1(b) and 2(b).

First and foremost, we observe that the fixed prefix aggre-
gation strategy results in much larger errors than the variable
prefix aggregation strategy. This is an expected result since
the former aggregates blocks regardless of their infection rate.
Therefore, many dissimilar blocks (in regards to their scores in
Eq. (1)) are aggregated, leading to large differences between



the infection rates of the individual /24 blocks and the infection
rate of the aggregated block.

In the case of the fixed prefix aggregation strategy, we
also observe that the errors almost linearly increase with the
(decreasing) aggregation level, although the achieved reduction
of the number of lines is not linear at all. This is due to the fact
that the strategy also considers empty blocks, i.e., blocks with
a score of 0. Aggregating an empty block with a non-empty
block does not reduce the number of lines, but increases the
error. This effect aggravates with the aggregation level (see
Section III-B). In fact, up to around aggregation level /18,
substantial reductions in the number of lines are achieved by
the strategy. After this point, as we can see from the constant
error increase, the aggregation of two netblocks becomes more
expensive in terms of errors. At aggregation level /8, the
absolute and square errors are respectively 2.36 and 2.8 time
larger than at the /18 level. This leads to the conclusion that
the aggregation to larger netblocks (small prefixes) has a huge
impact on the precision of the final blacklist and therefore it
might not be worthy to aggregate beyond a certain level.

In contrast, the error curves of the variable prefix aggre-
gation strategy mostly mirror the achieved reduction of lines.
Both the number of lines and the global errors significantly
change up to around level /18. After this point, there are nearly
no more aggregations and the error stabilizes. The square error
(see Figure 2(b)) better visualizes the changes at the levels /21
through /17 than the absolute error (see Figure 2(a)).

3) Distribution of Malicious Hosts: As already stated, the
variable prefix aggregation strategy achieves most of the
reduction when moving from level /24 to /23. After that, only
a small portion of the BadHoods fulfill the merging condition
and can be aggregated further. The bar chart in Figure 3 (left y-
axis) shows the resulting distribution of the BadHood sizes for
aggregation level m = 8 and β = 0.8. As can be seen, a large
portion (around 580k) of the initial 960,167 /24 BadHoods
are not aggregated at all and remain at level /24. Around 109k
entries are aggregated to /23 BadHoods and only a few entries
are aggregated to /22 or higher.
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In the same figure, we also show the distribution of the
number of /32 host addresses (right y-axis). Remember, that
the original data set contains 8,177,138 host addresses (see
Section IV-A). According to the figure, around 2 million host
addresses remain in /24 BadHoods after aggregation, but most
of the hosts can now be found in /23 to /17 BadHoods.
Surprisingly, the distribution of the host addresses over the
aggregated BadHoods does not match the distribution of
the BadHood sizes, even when considering that a /(n − 1)
BadHood is twice as large as a /n one. For example, the /23
BadHoods has around 60% more host addresses than what one
would expect from the BadHood size distribution. This can be
explained by the nature of BadHoods. Since a /24 netblock
with a high score indicates a badly managed subnetwork, it
is natural to assume that similar netblocks can be found in its
neighborhood. Such netblocks are preferred by the merging
condition in Eq. (4) and, hence, are more likely aggregated.
These results illustrate the benefits of the aggregation.

D. The Impact of the Parameter β on the Aggregation
In the following experiments we study the impact of the

merging parameter β on the performance of the variable prefix
aggregation strategy. Intuitively, if β is too permissive (β close
to 0.5), it might results in a blacklist in which most of the
blocks are aggregated, while a more strict value for β (β close
to 1.0) would aggregate very few blocks. However, at the same
time, a permissive aggregation strategy would also result in a
larger aggregation error, while a strategy aggregating only very
similar blocks would result in a small error.

Figure 4 shows, for varying values of β, the number of
entries in the blacklist output by the aggregation strategy, as
well as the corresponding global errors (absolute and square).
For β = 0.5, the resulting BadHood blacklist contains around
470k entries. For increasing values of β, the blacklist becomes
progressively larger, while the errors decrease almost linearly.
Finally, for β = 1.0, the final blacklist has almost the same
number of lines as the original not aggregated one, since the
algorithm only aggregates valid netblocks with exactly the
same infection rate. Therefore, no error is observed for β= 1.0.

The figure also clearly shows that there is a trade-off
between having a short and efficient blacklist and having
a small merging error. Therefore an appropriate value of
β should be chosen case by case, and, accordingly to the
scenario, the security manager should decide to compromise
incurred error and blacklist size.

E. Aggregating Different Input Blacklists
We now discuss the performance of the variable prefix ag-

gregation strategy for the data sets presented in Section IV-A.
We omit the result of the fixed prefix aggregation strategy
due to its large errors. In general, the same behavior as in
Section IV-C is observed.

In Figure 5, we show the number of lines of the result
blacklists relative to the original sizes of the /24 data sets,
as computed by the variable prefix aggregation for varying
aggregation level and β= 0.8. We observe that our aggregation
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Fig. 4. The impact of β on the variable prefix aggregation

strategy is able to reduce the blacklist size for each of the
considered data sets. For β= 0.8, the data sources experience a
reduction on the number of entries from 10% for the “Provider
A” data set to 26% for the CBL.

A second observation is that the two largest lists, namely
CBL and PSBL 2010 (April 28th), clearly benefit more from
the aggregation than the smaller lists. This is expected because
the BadHoods in the smaller lists are more sparsely distributed
over the Internet address space and, hence, are harder to
aggregate. In addition, the “Provider A” data set experiences
the smallest reduction of all four traces.

V. RELATED WORK

To the best of our knowledge, this is the first work that
addresses Internet Bad Neighborhoods and IP aggregation in
combination. However, other research works have addressed
both topics separately. Therefore, in this section we first cover
works related to Internet Bad Neigborhoods and then those
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that address IP aggregation.
Previous studies [1], [2] have shown that malicious hosts

tend to be concentrated on some subnetworks instead of being
randomly distributed on the Internet. DNS blacklists [13],
such as [3], [14], [15], also suggest the same concentration.
Taking this into account, the Bad Neighborhood concept was
introduced in [4]. In that study, the authors have developed a
mail filter that employed Spam BadHoods to tell whether a
particular message was spam or not, based on the sender’s IP
address.

In a following work, we have investigated in details Spam-
ming BadHoods [5]. By taking into account the way spammers
behave [18], we have proposed four definitions for Spamming
BadHoods, each of them addressing a particular part of the
“spam picture”. Among the results, we have found that even
though bots seems to be responsible for most of the spam,
we should not neglect the impact by massive spamming
BadHoods, that is, spamming BadHoods that have few hosts
sending a massive number of spam each to a single domain. In
the two previous research works Spamming BadHoods were
evaluated using the /24 prefix. In this work, however, we
present two strategies that allow to build Internet BadHoods
using other prefixes than /24 that can be employed as well to
analyze Spamming BadHoods and any other type of Internet
Bad Neighborhood.

The other topic addressed in this paper – IP aggregation
– was previously investigated by the IP routing community.
Back in 1993, only classful addresses were used (former
classes A, B, and C). This addressing scheme was causing
several problems – including exhaustion of the Class B net-
work address space and “growth of routing tables in Internet
routers beyond the ability of current software, hardware, and
people to effectively manage” [7]. Therefore, in 1993 the
IETF introduced the Classless Inter-domain Routing (CIDR)
addressing [7], and the prefix notation used in this work. This
new addressing scheme allowed blocks to be allocated under



prefixes different than the ones specified by classes A, B,
and C. That allowed route entries with the same prefix to be
aggregated in what is called supernets [19]. By aggregating
them, the number of entries in routing tables of BGP [8]
routers was reduced, and that decreased the requirements for
storing route information on routers and the overhead when
matching routes. Current BGP routers have typically 372k
entries in their routing tables [9], a small value compared to
current /24 BadHoods blacklists.

Other research works have been conducted in related areas.
Liu et al [20] have proposed an algorithm to minimize rules in
a firewall. Differently from our work, their algorithm is based
on packet classifiers (e.g, fields) and not on network prefixes.

VI. SUMMARY AND CONCLUSIONS

Internet BadHoods are built upon the idea that hosts in a
compromised environment also have a certain likelihood to be
compromised in the same way. In previous studies, Internet
BadHoods were investigated using a /24 aggregation level. In
this paper, however, we question this pre-established value,
and investigate how it is possible to meaningfully aggregate
Bad Neighborhood blacklists and what is the effect of this
operation compared to the original /24 Bad Neighborhoods.
The motivation for doing that is to reduce the number of
entries in BadHood blacklists, therefore improving their effi-
ciency. However, aggregation might impact the precision of the
blacklisting process, for example if a largely benign network
block increases its malicious score due to an aggregation with
a neighboring block.

We propose two different strategies to aggregate Internet
BadHoods to different prefixes, and measured the effectiveness
of the aggregation, as well as the introduced error. The fixed
prefix aggregation strategy has proven to be very efficient
when it comes to reducing the number of lines in Badhood
Blacklists. By aggregating the entries to /18, we observe a
reduction of 93.85% on the original size. However, the error
incurred by this strategy is high. For the evaluated data, the
results have shown that the aggregation after /18 corresponds
to a reduction of very few entries at the expense of a large
error. The variable prefix aggregation strategy can be seen,
with respect to the final number of entries, as less aggressive,
since blocks are only aggregated if they match the merging
condition. Therefore, we observe a smaller size reduction
compared to the fixed prefix aggregation, but the overall error
is also reduced. Moreover, due to the merging condition,
the variable prefix aggregation strategy terminates after few
iteration, when no more aggregation are possible.

From the presented results we conclude that Internet
BadHood aggregation is a viable approach to the problem of
reducing the size of a blacklist. However, when applying the
fixed size aggregation strategy we should be aware that this is
likely to result in a large number of benign netblocks being
blacklisted. Therefore, this strategy should be used only in
cases where the BadHood size is more important than the error
introduced. On the other hand, the variable size aggregation
strategy can be employed in cases where it is required to

compromise between error and size of the final blacklist. The
aggregation parameter β was introduced in this strategy to
allow one to fine tune the trade off between blacklist size and
error. We have shown that by having 0.8 for β, we could reduce
the number of entries by 10% to 26%, depending on the data
source. However, the best value for β remains an application-
and management-dependent decision.
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