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Abstract. Nowadays, network load is constantly increasing and hjgted in-
frastructures (1-10Gbps) are becoming increasingly comnho this context,
flow-based intrusion detection has recently become a pmognisecurity mech-
anism. However, since flows do not provide any informatiortt@ncontent of a
communication, it also became more difficult to establishoaugd truth for flow-
based techniques benchmarking. A possible approach tomwerthis problem
is the usage of synthetic traffic traces where the generafionalicious traffic
is driven by models. In this paper, we propose a flow time seariedel of SSH
brute-force attacks based on Hidden Markov Models. Ourteshow that the
model successfully emulates an attacker behavior, gengrateaningful flow
time series.

1 Introduction

Since the last decade, we are facing a constant rise of bottorieload and speed.
This has become a problem for packet-based network intngtection systems since
a deep inspection of the packet payloads is often not feasililigh-speed networks. In
this context, flow-based intrusion detection emerged adtamative to packet-based
solutions [1]. Dealing with aggregated network measungsh &s flows, helps in reduc-
ing the amount of data to be analyzed. A flow is defined as “afdét packets passing
an observation point in the network during a certain timernval and having a set of
common properties” [2]. A flow carries information about 8wirce/destination IP ad-
dresses/ports involved in the communication, but nottgrignbwn about the content of
the communication itself.

Flow-based time series are a well-known way of visualiziegork information
[3]. Flow-based time series allow data processing in a stieg fashion, offer a com-
pact representation of network traffic and allow to analyat@ &eeping into account the
temporal relations between events. The drawback of flovedéime series is that we
cannot have direct evidence of when an attack happened.d$haeases, a ground truth
is missing. Attack-labeled flow data sets are rare and the#tion is a lengthy and time
consuming process [4]. To overcome this problem, appraaichsed on the superposi-
tion of real non-malicious traffic with synthetic attackffiahave been introduced [5,
6]. For these approaches to work, we need models of netwtarket



In this paper, we propose a time-series based model of SSkeHwrce attacks built
upon the concept of Hidden Markov Models. We show that ourehisdable to emulate
important aspects of the network behavior of such attackisgamerates meaningful
flow-based traffic time series.

This paper is organized as follows. Section 2 summarizegethted work on mod-
eling of malicious traffic. Section 3 describes how SSH bifotee attacks are charac-
terized at flow level. Section 4 presents our model for SSHaials traffic. The model
is evaluated in Section 5. Finally, conclusions are draw®ention 6.

2 Related work

Hidden Markov Models (HMM) are effective in modeling seqtiehdata [7]. Since
they have been introduced in the early 1970s [8], they haga beccessfully applied to
different scientific fields. Examples are biological seqeeanalysis [9], speech recog-
nition [10] and pattern recognition [11].

Hidden Markov Model triggered the curiosity of many reséars also in the fields
of Networking and Intrusion Detection. HMM can be trainedeal data and their main
characteristic is the ability to capture the temporal béranf the observed processes.
The work of [12] proposes to formalize traffic exchange imtgiof “HMM profiles”, a
stochastic structure suited for sequence alignment. TStssshow that the models are
able to classify traffic sequences at application level 118, 4], the authors propose
a packet-level model of traffic sources based on HMM. The hpadwes to be effec-
tive in application classification. Moreover, a secondtfrliapplication of the model
in [13, 14] is in traffic prediction, namely forecast of shtetm future traffic behavior.
Similarly to these last contributions, we will use our mofieltraffic generation. Nev-
ertheless, the work in [12—-14] focuses on the packet-levielle we are interested in
flow-based time series.

Hidden Markov Models are particularly appealing in IntarsDetection, since they
are able to calculate how likely a certain sequence of evenBehavioral models for
host-based intrusion detection have been proposed in fib]1&]. The authors profile
the normal sequence of system calls and raise alarms wireaeeguence is unlikely
to be seen. Contrary to these contributions, we model noalgcactivities based on
network data. A different approach is the one in [17], whaeehidden states model the
safety status of a network. Similarly to them, we also assiggemantic meaning to the
hidden states. However, in our case the hidden states ntawlbehavior of an attacker.

SSH brute-force attacks are a well known cyber threat [2D Afhough the attack
is very common, it is still potentially dangerous. Our saglj4] showed that newly set
up vulnerable hosts can be compromised within few days andbed as platform for
the same attacks. We also showed that SSH attacks are \asifitev level as peaks
in the SSH flow time series [22]. However, this observatidls tes only how SSH
attacks affect the total network traffic when such attacksaaitheir peak of intensity. In
this paper we want to explore how the entire time series géaeéiby a single attacker
evolves in time.



3 Flow-based characterization of SSH brute-force attacks

Brute-force SSH attacks are one of the most common threatghier space [21]. In
this section we qualitatively characterize such attackkat level, namely describing
what a brute-force SSH attack looks like if only flow inforneaitis available. We ana-
lyze the traffic generated by a host known to have performe8it IS ute-force attack
against our university network. The attack took place inghady afternoon of July 16,
2008 and lasted approximately 40 minutes. During this uatlerapproximately 8300
distinct university hosts have been attacked. The attankmgéed a volume of traffic of
approximately 32,400 flows, 279,000 packets and 30.5MB.
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Fig. 1. Flow, packet and byte time series for a malicious SSH user

Figure 1 shows for the attacker the evolution over time off(@ number of flows
created per second, (ii) the number of packets transfegesigrond, and (iii) the num-
ber of bytes transferred per second. The time resolutiohefitme series is 1 second.
Each value in the time series accounts for both the traffiegead by the attacker and
the traffic that he receives from the victims. In this waysifossible to characterize
in the same time series the entire attack. During the atitsktensity varies. In the
flow time series we can see that in about the first 1000 secdmdattack intensity
grows, reaching a peak of 450 flows/s. After that, the numb#ows per second drops
abruptly and roughly stabilizes around 100 flows/s. Findhg attack activity slowly
fades off in the last 500 seconds. Moreover, a deeper asafshe flow time series
shows that the activity pattern is not constant in time: esatond of activity is often
followed by one or more seconds of inactivity. The packet layig time series closely
follow the one of flows. Both show a peak around 1000 secomdzghe beginning
of the attack. As for flows, the trend of packets and bytesgdéodtabilize for a while
before the attack slowly dies. This behavior suggests thehd an SSH brute-force
scan, the flows, packets and bytes statistics are mutualiglated.
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Fig. 2. Temporal visualization of a brute-force SSH scan (a) andhtian of packets per flow

during the scan (b)

A different view on the attacks is given by Figure 2(a). Eadrkrin the graph ei-
ther represents a malicious connection from the attackantictim or the answering
connection from the victim back to the attacker. The y-axegthe 65,535 possible
destination addresses in the university network. We ifietitree attack phase®uring
the scanning phaséirst 1000 seconds), the attacker performs a sequential S8&H
spanning over the entire network address space. In thiephtee attacker gathers in-
formation on which hosts run a vulnerable SSH service. Qafictims respond to the
attack. Once this phase is completed, the attacker irsteterute-force user/password
guessing attackbfute-force phasg In this phase, only a small subset of the hosts in



the network is involved. This phase corresponds to the sebtotk of 1000 seconds
and is characterized by a high interaction between thekattand the victims. Finally,
after about 2000 seconds since the beginning of the attaelrute-force phase ends.
Nevertheless, the time series in the previous picture hilsgady shown that after this
moment in time there is still traffic. Form Figure 2(a) it ismevident that the residual
traffic is due to compromised hosts that communicate withattecker. We refer to this
final phase as thaie-off phase

Although the three attack phases are clearly visible in feig2(a), they are not
so clearly identifiable from the flow, packet and byte timdeseshown in Figure 1.
However, the fact that the three time series are correldiedsius to derive a more
suitable measure. Figure 2(b) shows the evolution over tirthe packets per flow
again with a resolution of 1 second. Using this measure,hreetphases are clearly
visible. The scanning phase is characterized by only fevkgtamer flow, in average
between 1 and 1.5. These values are consistent with a scémavhich several three-
way handshakes are initiated but only few are completed.n/the brute-force phase
starts, the number of packets per flow has a sharp rise: frbrtola average of about
11. During this phase, several user/password combinagimntested against the same
victim. This explains why the attacker produces a higher loemof packets per flow.
Finally, the die-off phase sees again only few packets per fio the majority of the
cases, we observe only one packet per flow. The variation dfgta per flow over
time seems therefore to be a key characteristic of the behafian SSH brute-force
attacker. It moreover shows that the flow, packet and byte semies still carry enough
information to characterize the attack.

The attack behavior that we described in this section ictifor a brute-force SSH
attack. While monitoring the university network, we obgeirvaverage one attack with
these characteristics per day. In the following sectionyiedescribe how the flow-
based characterization that we just proposed can be useddel ithe behavior of an
SSH brute-force attacker.

4 Modeling with HMM

The analysis of a typical SSH brute-force attack that weereesl in Section 3 pointed
out three key characteristics of such attacks:

1. The flow, packet and byte time series exhibit a clear caticei.

2. Attacks consist of three phases: a scanning phase, afbratephase and a die-off
phase.

3. The subdivision into phases may not be evident when werebdsiee flow, packet
and byte time series directly, but it becomes manifest wheaensider the packet
per flow time series.

These key characteristics will play a central role in théofelng when modeling attacks
using Hidden Markov Models (HMM).

This section is organized as follows. Section 4.1 brieflyapitilates the definition
of HMM. In Section 4.2 we show how an SSH brute-force attaagk loa described as
a Markov Chain. In Section 4.3 we describe the output prditi@siassociated to each



state and how they can be used to generate meaningful tines.deinally, Section 4.4
explains how the model parameters are computed from reakicates.

4.1 Hidden Markov Models

Hidden Markov Models are a class of statistical models abléeiscribe sequences of
data resulting from the interaction of several random psees.

Formally, an HMM is a discrete time Markov chain (DTMC) whezach state is
augmented with a probability distribution over a finite sebotput symbols. Given a
sequence of state€3 = ¢;¢» . . . with associated output symbal§ = k15 ... we say
Q@ forms thehidden sequencand K forms theobservation sequence

With S = {s1, ..., s, } we denote the finite set of hidden statéss calledhidden
chain With ¢; we denote the state at tinte With a;; we denote the probability of
jumping from states; to states;. Since we are dealing with a DTMC, this probability
only depends on the current statg i.e.:a;; = Plqi+1 = s; | ¢¢ = s;). With w;
we denote the probability of the initial state beipg i.e.:m; = P(qg1 = s;). With
O = {oy,...0n} we denote the finite set of output symbols. Withwe denote the
output symbol seen at time With b;(0) we denote the probability of seeing output
symbolo when the hidden state is, i.e.:b;(0) = P(k; = o | ¢t = s;).

An HMM separates the state chain from the observable oulis. key charac-
teristic allows us to model malicious SSH attacks in an ¢iffeavay and to generate
synthetic flow, packet and byte time series.

4.2 The hidden chain
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Fig. 3. HMM for the SSH brute-force attack with an example of traositprobabilities learnt
from real data

In Section 3, we explained that an SSH brute-force attackistmof three phases:
a scanning phase, a brute-force phase and a die-off phasealéeuse of these phases
to define the hidden chain.

Our model consists of the following seven states:



— the statesS;, i = 1,2, 3. In these states, the attackemastiveand causes network
traffic.

— the stated;, i = 1,2, 3. In these states, the attacketésnporary inactiveas de-
scribed in Section 3.

— the end staté&/nd.

The stateS; is the start state withg, = 1. Figure 3 depicts the states and the possible
transitions.

The statesS; and I; model the scanning phase of the attack. As it can be seen
in Figure 3, once the attack moves from the scanning phadeetorute-force phase,
represented by the stat8s andls, it cannot return to the previous phase. This ensures
that the scan will not be performed more that once for eadtlatOn the other hand,
the die-off phase (states; and I3) can partially overlap with the brute-force phase.
This phenomenon is modeled by making the stétés I», S3} a fully connected chain.
However, the transition probabilities for this subset atas will privilege transitions in
the same phase. Finally, the stated models the end of an attack. We allow the model
to jump from each active state to the E'nd state, thus reflecting the fact that some
attacks stop after the scan phase or the brute-force phase.

4.3 The output probabilities

The aim of our model is to generate meaningful synthetic flimgket and byte time
series for a SSH brute-force attack. Hence, at each transtiur model should output
a triple (F, P, B) with the values for the three time series.

It is important to note that these three values are not inuget, as shown in Sec-
tion 3. Hence, to generate correctly correlated valuesherthiree time series, a joint
output probability distributiorPr, p 5 would be needed for each state of the model. In
the following, we will present a different approach that apgmates the triple-joint
probability distributionPr p 5.

To each active stat§;, : = 1,2, 3 in our model we assign the following two distri-
butions:

1. an empirical probability distribution of flowBg;
2. an empirical joint probability distribution of packetsrdlow (PP F') and bytes per
packet BPP), denoted a®ppr prp.

At each transition, random values Bf PPF and BP P are generated according to the
empirical distributions associated to the current stateeiGthe number of flows’, we
assume the number of packets per flows and the number of bstempkets to be the
same for all the flows for this emission. We calculate

P = PPF.F,
B = BPP.PPF.F.

The joint probability distributionPrrr, 5 pp and the indirect computation ¢t and B
by the above expression ensure the strong correlation kativeP andB that we have
observed in the data.

In the stated;, i = 1, 2, 3, the attacker is by definition temporarily inactive and the
triple (0,0, 0) is the only allowed output.



4.4 The parameter estimation

Once the hidden chain and the outputs of the model have béieedeve need to esti-
mate the transition probabilities and the emission prditabiistributions for the states
Si, i = 1,2,3. Several methods for estimating the parameters of an HMM haen
proposed in literature, for example the Baum-Welch albarif8], or the simulated an-
nealing method of [23]. However, these methods are used theainaining is based on
sequences of observations only and the hidden state segjisaumtknown.

In our training procedure, we follow a different approacheTnalysis of the pack-
ets per flow time series, such as the one in Figure 2(b), affeaswvay to precisely relate
each observation in a trace with the hidden state that amhiittéve therefore manually
labeled the traces in our training data sets. Once the hidd¢a sequence is known,
we calculate each transition probability as

|{transitions froms; to s, }|
Q;i = s
* |{transitions froms, }|

Figure 3 gives an example of transition probabilities Iédrom real data. The hid-
den state sequence is used to compute the output prolebdigsociated to each state.
We calculate the distribution8r and Pppr gpp for a stateS;, i = 1,2,3 from the
frequency histograms of the observations emitted fromgtzdé.

5 Validation

In this section we will evaluate the performance of the mgaeposed in Section 4. In
particular, we will show that the model is able to generatglsgtic traffic that has the
same statistical characteristics of the SSH brute-foteeltraces we used as training.

We based our validation on two data sets consisting of nealicSSH traces col-
lected at the University of Twente networdriginal data sets. The validation proceeds
as follows. First, we train an HMM for each distinct data Sscond, we use the models
to generate groups of synthetic traces sufficiently largeaHe calculation of the con-
fidence intervals. We refer to these traceswsthetic data set§ hird, we analyze the
statistical properties of the synthetic data sets and wepaoethem with the original
data sets. The aim of this analysis is to show that the moadillésto encode sufficient
information to correctly emulate the original traces.

Section 5.1 describes the data sets used for the trainiritg ®&ction 5.2 explains
how the synthetic traces are generated. Section 5.3 irtesdour testing methodology.
Finally Section 5.4 presents our results.

5.1 Original data sets

Our model of SSH brute-force attacks has been tested on ttaosdés. Each data set
contains flow, packet and byte time series for a group of Hostsvn to have scanned
our networks. The malicious hosts are all distinct.

The time series have been created considering time slotsetdnd. The volume
of traffic for each time slot is comprehensive of both thefitafenerated by the scanner
and the traffic that it receives.



Table 1 presents the data sets. Both data sets have beectakriring a moni-
toring window of one week on the network of the University @féihte. The offending
hosts have been identified by a high interaction honeypoigharmally active in our
network.Set 1has been collected in July 2008 and consists of 17 tr&sd?has been
collected in April 2009 and consists of 13 traces. Otherdpstforming SSH malicious
activities have not been considered part of the data seate #irey appear to belong to
a different class of scans. The statistical analysis of Wedata sets shows that the
average values of flows, packets and bytes over time havgedantime. InSet 2 the
attackers appear to produce in average more that twice tbaratraf packets and bytes
compared tBet 1 This suggests that, while the attack mechanism stays the,she
attacks’ intensities are likely to vary in the course of tilds a consequence, models
trained on real data would need periodical retrain.

|Data Sef Collection time [Traceg Avg. Flows/se¢Avg. Packets/sepAvg. Bytes/se¢

Set1 |13-20 July 200§ 17 11.06 66.91 7337.33
Set 2 |19-26 April 2009 13 15.80 150.52 19016.00
Table 1. Statistical characteristic of the collected data sets

5.2 Synthetic trace generation

We define a synthetic trace as the sequence of observaterieéimodel outputs when
a random path is taken. The generation process can be surethas follows. Let's
assume the model to be in state

1. attimet, the model jumps from the current stateto the next state; according to
the transition probabilities;;, j = 1,...n.

2. if s; is the End state, the path is concluded and the trace ends.

3. onces; has been selected, the model randomly selEctBPF and BPP.

4. the model outputs the trip(e”, P, B), calculated on the basis of the random values
generated in the previous step (as explained in Section 4.3)

5. once the observations have been emitted, the procestedrom step 1.

At each iteration, the model chooses which tripke P, B) will be emitted. This
choice is independent from the previous outputs and is otbetronly by the empirical
probability distributions of’, PPF and BP P associated with the current state. Table
2 presents the range of these distributions for I8#hlandSet 2 The model controls
also the duration of a trace, since a trace ends only whemsitian to theE'nd state is
randomly selected.

5.3 Testing methodology

Our testing methodology aims to measure the average itakisharacteristics of a set
of synthetic traces and compare them to the ones of the afidata setSet landSet
2. Each statistical metric is calculated for flows, packetslaytes. We are interested in
three types of statistical measures:



Distribution Setl Set 2
Min [ Max [Min] Max
Fphasel| 1 789 | 1 | 3825

Fphase2| 1 519 | 1 | 860

Fphase3| 1 227 | 1 | 250
PPFphasel 1 |26.4841 1 | 27
PPF phase? 1 165 | 1 17
PPF phase 3 1 5 1 5

BPPphase ]l 40 |156.42| 40 |225.71
BPP phase $50.84 267.27| 52 |319.42
BPPphaseB 40 | 836 | 46| 1148
Table 2. Empirical distribution ranges for the training data sets

— the mean and standard deviation for flow=( o), packets fp,cp) and bytes
(4B, 0B). These measures describe tlverall behavioof flows, packets and bytes
independently of each other in a trace.

— the correlation coefficientsrp, prp andppp between flows, packets and bytes.
These measures describe ttependencbetween flows, packets and bytes in the
same trace.

— autocorrelation of lag 1 of flowsHr), packets Rp) and bytesR ). The autocor-
relation captures thevolutionof a trace over time, measuring the interrelation of
the trace with itself in different moments in time.

The previously introduced measures are relative to a strgde. In our experimen-
tal results, we calculate the average values of each mefsubeth the original data
sets and the synthetic ones. For the synthetic trace, wecalsaolate the 95% confi-
dence intervals. Each synthetic data set consists of 36@gr&inally, we evaluate how
well the synthetic traces approximate the original onesréter to do so, we calculate
for each measure: the relative error between the original traces and the sittbnes:

Err — |morig - msynl
Morig

5.4 Experimental results

This subsection presents the numerical results obtairved fne analysis of the syn-
thetic data sets. Table 3 offers an overview of the averagestital measures for both
the original and the synthetic data sets. The same tabldisisdhe relative error be-
tween original and synthetic measures. The results willibeudsed in the following
sections.

Average mean and standard deviationBoth the model trained o8et 1and the one
trained onSet 2approximate the averages of flows, packets and bytes withiooa
relative error.



| | Setl | Synthetic1  [Err [ Set2 | Synthetic2 | Err |

WE 11.06 12.27+0.33 0.109| 15.80 15.15+ 0.65 0.041
wp 66.91 66.66+ 3.67 0.044| 150.52 138.85+ 8.5 0.077
up | 7337.33| 7524.73+ 523.11 |0.025| 19016.00) 18107.88+ 1153.53|0.047
oF 36.45 38.33+1.12 0.051| 40.0 47.01+ 1.87 0.174

op | 324.29 243.43+10.91 |0.249| 379.38 419.16+ 16.55 |0.104
op | 28510.35/ 28345.60+ 1616.630.005| 47060.07| 55378.58 4+ 2239.910.176

PFP 0.79 0.79+£0.012 |0.001} 0.83 0.86+ 0.01 0.039
PFB 0.76 0.74+£0.016 |0.023| 0.79 0.81+ 0.01 0.024
PPB 0.94 0.98+ 0.002 0.047| 0.98 0.98+ 0.001 0.001
HRp 0.46 0.23+0.009 |0.498 0.64 0.26+0.01 0.593
URp 0.56 0.25+0.012 |0.547| 0.71 0.304+0.009 |0.577
URp 0.58 0.26+0.012 |0.549| 0.75 0.304+ 0.009 |0.592

Table 3. Numerical comparison between the original and the syrtiustia sets.

The results also show that our approach approximates théathdeviation of both
the original data sets within 10% relative error, with ondywfexceptions: the average
standard deviation of packets f8et 1land the average standard deviations of flows and
bytes forSet 2 RegardingSet 1 the synthetic measure underestimates the one in the
original data set. On the contrary, 8et 2 the synthetic measures are higher than the
original. We suspect this phenomenon is related to the autelation of the traces in
the original data sets.

Table 3 also presents the 95% confidence intervals for theageeneans and the
standard deviations. For all measures, the confidencevalseare close to the average
values.

Average correlation The correlation coefficients show that the proposed moddlis
to capture the interrelations between flows, packets anesbgespite that the realiza-
tions of the random variablegs and PPF are independently drawn. The relative error
in the case of the correlation coefficients is indeed lesgjaakto 4.7% ppg) in the
case ofSet 1and less or equal to 3% £ p) in the case ofet 2

In the same table we listed also the 95% confidence intergathé average corre-
lation coefficients. As in the case of the average relativeretlescribed in the previous
section, the confidence intervals are closed to the meaesalu

Average autocorrelation The last measure we consider is the average autocorrelation
The autocorrelation characterizes the temporal evolufantrace.

For bothSet landSet 2our model fails to approximate the autocorrelation values.
The autocorrelation of the synthetic traces, indeed, ighthalf of the autocorrelation
in the original data sets. This means that consecutive satua synthetic trace have a
higher random component than in the original traces.

We believe that the cause of lower autocorrelation coefitsiean be found in the
attacker behavior during the brute-force phase. The aidmaces, indeed, show that



during this phase the time series presents a certain réyuses for example a bounded
number of flows per seconds. Our model, on the other handpralydselects at each
iteration new values for flows, packets and bytes, withoytraemory of the previous
outputs. This behavior is reflected in lower autocorrefatialues. We consider to ex-
tend the model to capture regularity in the brute-force plessa possible future work.

As for the previous measures, also in this case the confidaterwals show that
the model has a low variability in the autocorrelation value

6 Conclusions

In this paper, we have presented a compact model of SSH fot¢e-attacks based
on Hidden Markov Models. The model has been inferred on ttsiskaf only flow
information and it encodes the network behavior of SSH kstagcanning phase, brute-
force phase and die-off phase. The model parameters hauechlalated on the basis
of real data traces captured at the University of Twente otw

In this paper we also demonstrate that the model, once ttainegeal data, is able
to emulate the network behavior of a SSH brute-force atra&ymthetic traces approx-
imate the mean, standard deviation and correlation of flawket and byte time series
within 10% relative error. The model fails only in approxiting the autocorrelation.
The synthetic traces, indeed, seem to have a higher randmmareent than the original
training trace.

As far as we are aware, this was the first time that HMM have lagpfied to the
generation of flow-based time series for malicious users.résults are encouraging,
but many aspects are open for future work. First, we aim toedfie model. For exam-
ple, a more detailed model of the brute-force phase can inegtee autocorrelation. In
addition, the empirical emission distributions can be stiied by estimated distribu-
tion functions to make the model resilient to unforeseerenlaions. Second, we plan
to adapt the model to be used for detection. In this contegtare also interested in
investigating if the model we proposed is suitable for diéteacof other brute-force at-
tacks that show a similar phase behavior. An example can heeforce attack against
the telnet service. Third, we want to apply our HMM approaziother attack types,
such as DoS attacks or worms.
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