
Hidden Markov Model modeling of
SSH brute-force attacks

Anna Sperotto, Ramin Sadre, Pieter-Tjerk de Boer, Aiko Pras

University of Twente
Centre for Telematics and Information Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands

{a.sperotto, r.sadre, p.t.deboer, a.pras}@utwente.nl

Abstract. Nowadays, network load is constantly increasing and high-speed in-
frastructures (1-10Gbps) are becoming increasingly common. In this context,
flow-based intrusion detection has recently become a promising security mech-
anism. However, since flows do not provide any information onthe content of a
communication, it also became more difficult to establish a ground truth for flow-
based techniques benchmarking. A possible approach to overcome this problem
is the usage of synthetic traffic traces where the generationof malicious traffic
is driven by models. In this paper, we propose a flow time series model of SSH
brute-force attacks based on Hidden Markov Models. Our results show that the
model successfully emulates an attacker behavior, generating meaningful flow
time series.

1 Introduction

Since the last decade, we are facing a constant rise of both network load and speed.
This has become a problem for packet-based network intrusion detection systems since
a deep inspection of the packet payloads is often not feasible in high-speed networks. In
this context, flow-based intrusion detection emerged as an alternative to packet-based
solutions [1]. Dealing with aggregated network measures, such as flows, helps in reduc-
ing the amount of data to be analyzed. A flow is defined as “a set of IP packets passing
an observation point in the network during a certain time interval and having a set of
common properties” [2]. A flow carries information about thesource/destination IP ad-
dresses/ports involved in the communication, but nothing is known about the content of
the communication itself.

Flow-based time series are a well-known way of visualizing network information
[3]. Flow-based time series allow data processing in a streaming fashion, offer a com-
pact representation of network traffic and allow to analyze data keeping into account the
temporal relations between events. The drawback of flow-based time series is that we
cannot have direct evidence of when an attack happened. In most cases, a ground truth
is missing. Attack-labeled flow data sets are rare and their creation is a lengthy and time
consuming process [4]. To overcome this problem, approaches based on the superposi-
tion of real non-malicious traffic with synthetic attack traffic have been introduced [5,
6]. For these approaches to work, we need models of network attacks.

In this paper, we propose a time-series based model of SSH brute-force attacks built
upon the concept of Hidden Markov Models. We show that our model is able to emulate
important aspects of the network behavior of such attacks and generates meaningful
flow-based traffic time series.

This paper is organized as follows. Section 2 summarizes therelated work on mod-
eling of malicious traffic. Section 3 describes how SSH brute-force attacks are charac-
terized at flow level. Section 4 presents our model for SSH malicious traffic. The model
is evaluated in Section 5. Finally, conclusions are drawn inSection 6.

2 Related work

Hidden Markov Models (HMM) are effective in modeling sequential data [7]. Since
they have been introduced in the early 1970s [8], they have been successfully applied to
different scientific fields. Examples are biological sequence analysis [9], speech recog-
nition [10] and pattern recognition [11].

Hidden Markov Model triggered the curiosity of many researchers also in the fields
of Networking and Intrusion Detection. HMM can be trained onreal data and their main
characteristic is the ability to capture the temporal behavior of the observed processes.
The work of [12] proposes to formalize traffic exchange in terms of “HMM profiles”, a
stochastic structure suited for sequence alignment. The results show that the models are
able to classify traffic sequences at application level. In [13, 14], the authors propose
a packet-level model of traffic sources based on HMM. The model proves to be effec-
tive in application classification. Moreover, a second fruitful application of the model
in [13, 14] is in traffic prediction, namely forecast of short-term future traffic behavior.
Similarly to these last contributions, we will use our modelfor traffic generation. Nev-
ertheless, the work in [12–14] focuses on the packet-level,while we are interested in
flow-based time series.

Hidden Markov Models are particularly appealing in Intrusion Detection, since they
are able to calculate how likely a certain sequence of eventsis. Behavioral models for
host-based intrusion detection have been proposed in [15] and [16]. The authors profile
the normal sequence of system calls and raise alarms whenever a sequence is unlikely
to be seen. Contrary to these contributions, we model malicious activities based on
network data. A different approach is the one in [17], where the hidden states model the
safety status of a network. Similarly to them, we also assigned semantic meaning to the
hidden states. However, in our case the hidden states model the behavior of an attacker.

SSH brute-force attacks are a well known cyber threat [20, 21]. Although the attack
is very common, it is still potentially dangerous. Our studies [4] showed that newly set
up vulnerable hosts can be compromised within few days and beused as platform for
the same attacks. We also showed that SSH attacks are visibleat flow level as peaks
in the SSH flow time series [22]. However, this observation tells us only how SSH
attacks affect the total network traffic when such attacks are at their peak of intensity. In
this paper we want to explore how the entire time series generated by a single attacker
evolves in time.

3 Flow-based characterization of SSH brute-force attacks

Brute-force SSH attacks are one of the most common threats incyber space [21]. In
this section we qualitatively characterize such attacks atflow level, namely describing
what a brute-force SSH attack looks like if only flow information is available. We ana-
lyze the traffic generated by a host known to have performed a SSH brute-force attack
against our university network. The attack took place in theearly afternoon of July 16,
2008 and lasted approximately 40 minutes. During this interval, approximately 8300
distinct university hosts have been attacked. The attack generated a volume of traffic of
approximately 32,400 flows, 279,000 packets and 30.5MB.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 500 1000 1500 2000 2500 3000

flo
w

s

Time (s)

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000 2500 3000

pa
ck

et
s

/ 1
0

Time (s)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 500 1000 1500 2000 2500 3000

 b
yt

es
 /

10
3

Time (s)

Fig. 1. Flow, packet and byte time series for a malicious SSH user

Figure 1 shows for the attacker the evolution over time of (i)the number of flows
created per second, (ii) the number of packets transferred per second, and (iii) the num-
ber of bytes transferred per second. The time resolution of the time series is 1 second.
Each value in the time series accounts for both the traffic generated by the attacker and
the traffic that he receives from the victims. In this way, it is possible to characterize
in the same time series the entire attack. During the attack,its intensity varies. In the
flow time series we can see that in about the first 1000 seconds the attack intensity
grows, reaching a peak of 450 flows/s. After that, the number of flows per second drops
abruptly and roughly stabilizes around 100 flows/s. Finally, the attack activity slowly
fades off in the last 500 seconds. Moreover, a deeper analysis of the flow time series
shows that the activity pattern is not constant in time: eachsecond of activity is often
followed by one or more seconds of inactivity. The packet andbyte time series closely
follow the one of flows. Both show a peak around 1000 seconds since the beginning
of the attack. As for flows, the trend of packets and bytes tends to stabilize for a while
before the attack slowly dies. This behavior suggests that during an SSH brute-force
scan, the flows, packets and bytes statistics are mutually correlated.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500 3000

IP

Time (s)

FROM ATTACKER
TO ATTACKER

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

pp
f

Time (s)

(b)

Fig. 2. Temporal visualization of a brute-force SSH scan (a) and variation of packets per flow
during the scan (b)

A different view on the attacks is given by Figure 2(a). Each mark in the graph ei-
ther represents a malicious connection from the attacker toa victim or the answering
connection from the victim back to the attacker. The y-axis gives the 65,535 possible
destination addresses in the university network. We identify three attack phases. During
the scanning phase(first 1000 seconds), the attacker performs a sequential SSHscan
spanning over the entire network address space. In this phases, the attacker gathers in-
formation on which hosts run a vulnerable SSH service. Only few victims respond to the
attack. Once this phase is completed, the attacker initiates a brute-force user/password
guessing attack (brute-force phase). In this phase, only a small subset of the hosts in

the network is involved. This phase corresponds to the second block of 1000 seconds
and is characterized by a high interaction between the attacker and the victims. Finally,
after about 2000 seconds since the beginning of the attack, the brute-force phase ends.
Nevertheless, the time series in the previous picture have already shown that after this
moment in time there is still traffic. Form Figure 2(a) it is now evident that the residual
traffic is due to compromised hosts that communicate with theattacker. We refer to this
final phase as thedie-off phase.

Although the three attack phases are clearly visible in Figure 2(a), they are not
so clearly identifiable from the flow, packet and byte time series shown in Figure 1.
However, the fact that the three time series are correlated allows us to derive a more
suitable measure. Figure 2(b) shows the evolution over timeof the packets per flow,
again with a resolution of 1 second. Using this measure, the three phases are clearly
visible. The scanning phase is characterized by only few packets per flow, in average
between 1 and 1.5. These values are consistent with a scenario in which several three-
way handshakes are initiated but only few are completed. When the brute-force phase
starts, the number of packets per flow has a sharp rise: from 1.5 to a average of about
11. During this phase, several user/password combinationsare tested against the same
victim. This explains why the attacker produces a higher number of packets per flow.
Finally, the die-off phase sees again only few packets per flow. In the majority of the
cases, we observe only one packet per flow. The variation of packets per flow over
time seems therefore to be a key characteristic of the behavior of an SSH brute-force
attacker. It moreover shows that the flow, packet and byte time series still carry enough
information to characterize the attack.

The attack behavior that we described in this section is typical for a brute-force SSH
attack. While monitoring the university network, we observe in average one attack with
these characteristics per day. In the following section, wewill describe how the flow-
based characterization that we just proposed can be used to model the behavior of an
SSH brute-force attacker.

4 Modeling with HMM

The analysis of a typical SSH brute-force attack that we presented in Section 3 pointed
out three key characteristics of such attacks:

1. The flow, packet and byte time series exhibit a clear correlation.
2. Attacks consist of three phases: a scanning phase, a brute-force phase and a die-off

phase.
3. The subdivision into phases may not be evident when we observe the flow, packet

and byte time series directly, but it becomes manifest when we consider the packet
per flow time series.

These key characteristics will play a central role in the following when modeling attacks
using Hidden Markov Models (HMM).

This section is organized as follows. Section 4.1 briefly recapitulates the definition
of HMM. In Section 4.2 we show how an SSH brute-force attack can be described as
a Markov Chain. In Section 4.3 we describe the output probabilities associated to each

state and how they can be used to generate meaningful time series. Finally, Section 4.4
explains how the model parameters are computed from real data traces.

4.1 Hidden Markov Models

Hidden Markov Models are a class of statistical models able to describe sequences of
data resulting from the interaction of several random processes.

Formally, an HMM is a discrete time Markov chain (DTMC) whereeach state is
augmented with a probability distribution over a finite set of output symbols. Given a
sequence of statesQ = q1q2 . . . with associated output symbolsK = k1k2 . . . we say
Q forms thehidden sequenceandK forms theobservation sequence.

With S = {s1, . . . , sn} we denote the finite set of hidden states.S is calledhidden
chain. With qt we denote the state at timet. With aij we denote the probability of
jumping from statesi to statesj. Since we are dealing with a DTMC, this probability
only depends on the current statesi, i.e.: aij = P (qt+1 = sj | qt = si). With πi

we denote the probability of the initial state beingsi, i.e.: πi = P (q1 = si). With
O = {o1, . . . om} we denote the finite set of output symbols. Withkt we denote the
output symbol seen at timet. With bi(o) we denote the probability of seeing output
symbolo when the hidden state issi, i.e.:bi(o) = P (kt = o | qt = si).

An HMM separates the state chain from the observable output.This key charac-
teristic allows us to model malicious SSH attacks in an effective way and to generate
synthetic flow, packet and byte time series.

4.2 The hidden chain

S1start I1 S2 I2 S3 I3

End

0.617 0.813 0.723 0.757 0.667 0.848
0.378

0.186

0.235

0.214

0.269

0.152

0.004

0.001

0.04

0.029

0.039

0.022

0.001

0.001

0.003

Fig. 3. HMM for the SSH brute-force attack with an example of transition probabilities learnt
from real data

In Section 3, we explained that an SSH brute-force attack consists of three phases:
a scanning phase, a brute-force phase and a die-off phase. Wemake use of these phases
to define the hidden chain.

Our model consists of the following seven states:

– the statesSi, i = 1, 2, 3. In these states, the attacker isactiveand causes network
traffic.

– the statesIi, i = 1, 2, 3. In these states, the attacker istemporary inactive, as de-
scribed in Section 3.

– the end stateEnd.

The stateS1 is the start state withπS1
= 1. Figure 3 depicts the states and the possible

transitions.
The statesS1 and I1 model the scanning phase of the attack. As it can be seen

in Figure 3, once the attack moves from the scanning phase to the brute-force phase,
represented by the statesS2 andI2, it cannot return to the previous phase. This ensures
that the scan will not be performed more that once for each attack. On the other hand,
the die-off phase (statesS3 andI3) can partially overlap with the brute-force phase.
This phenomenon is modeled by making the states{S2, I2, S3} a fully connected chain.
However, the transition probabilities for this subset of states will privilege transitions in
the same phase. Finally, the stateEnd models the end of an attack. We allow the model
to jump from each active stateSi to theEnd state, thus reflecting the fact that some
attacks stop after the scan phase or the brute-force phase.

4.3 The output probabilities

The aim of our model is to generate meaningful synthetic flow,packet and byte time
series for a SSH brute-force attack. Hence, at each transition, our model should output
a triple(F, P, B) with the values for the three time series.

It is important to note that these three values are not independent, as shown in Sec-
tion 3. Hence, to generate correctly correlated values for the three time series, a joint
output probability distributionPF,P,B would be needed for each state of the model. In
the following, we will present a different approach that approximates the triple-joint
probability distributionPF,P,B.

To each active stateSi, i = 1, 2, 3 in our model we assign the following two distri-
butions:

1. an empirical probability distribution of flowsPF ;
2. an empirical joint probability distribution of packets per flow (PPF) and bytes per

packet (BPP), denoted asPPPF,BPP .

At each transition, random values ofF , PPF andBPP are generated according to the
empirical distributions associated to the current state. Given the number of flowsF , we
assume the number of packets per flows and the number of bytes per packets to be the
same for all the flows for this emission. We calculate

P = PPF · F,

B = BPP · PPF · F.

The joint probability distributionPPPF,BPP and the indirect computation ofP andB

by the above expression ensure the strong correlation betweenF , P andB that we have
observed in the data.

In the statesIi, i = 1, 2, 3, the attacker is by definition temporarily inactive and the
triple (0, 0, 0) is the only allowed output.

4.4 The parameter estimation

Once the hidden chain and the outputs of the model have been defined, we need to esti-
mate the transition probabilities and the emission probability distributions for the states
Si, i = 1, 2, 3. Several methods for estimating the parameters of an HMM have been
proposed in literature, for example the Baum-Welch algorithm [8], or the simulated an-
nealing method of [23]. However, these methods are used whenthe training is based on
sequences of observations only and the hidden state sequence is unknown.

In our training procedure, we follow a different approach. The analysis of the pack-
ets per flow time series, such as the one in Figure 2(b), offersus a way to precisely relate
each observation in a trace with the hidden state that emitted it. We therefore manually
labeled the traces in our training data sets. Once the hiddenstate sequence is known,
we calculate each transition probability as

aij =
|{transitions fromsi to sj}|

|{transitions fromsi}|
.

Figure 3 gives an example of transition probabilities learnt from real data. The hid-
den state sequence is used to compute the output probabilities associated to each state.
We calculate the distributionsPF andPPPF,BPP for a stateSi, i = 1, 2, 3 from the
frequency histograms of the observations emitted from thatstate.

5 Validation

In this section we will evaluate the performance of the modelproposed in Section 4. In
particular, we will show that the model is able to generate synthetic traffic that has the
same statistical characteristics of the SSH brute-force attack traces we used as training.

We based our validation on two data sets consisting of malicious SSH traces col-
lected at the University of Twente network (original data sets). The validation proceeds
as follows. First, we train an HMM for each distinct data set.Second, we use the models
to generate groups of synthetic traces sufficiently large for the calculation of the con-
fidence intervals. We refer to these traces assynthetic data sets. Third, we analyze the
statistical properties of the synthetic data sets and we compare them with the original
data sets. The aim of this analysis is to show that the model isable to encode sufficient
information to correctly emulate the original traces.

Section 5.1 describes the data sets used for the training, while Section 5.2 explains
how the synthetic traces are generated. Section 5.3 introduces our testing methodology.
Finally Section 5.4 presents our results.

5.1 Original data sets

Our model of SSH brute-force attacks has been tested on two data sets. Each data set
contains flow, packet and byte time series for a group of hostsknown to have scanned
our networks. The malicious hosts are all distinct.

The time series have been created considering time slots of 1second. The volume
of traffic for each time slot is comprehensive of both the traffic generated by the scanner
and the traffic that it receives.

Table 1 presents the data sets. Both data sets have been collected during a moni-
toring window of one week on the network of the University of Twente. The offending
hosts have been identified by a high interaction honeypot that is normally active in our
network.Set 1has been collected in July 2008 and consists of 17 traces.Set 2has been
collected in April 2009 and consists of 13 traces. Other hosts performing SSH malicious
activities have not been considered part of the data sets since they appear to belong to
a different class of scans. The statistical analysis of the two data sets shows that the
average values of flows, packets and bytes over time have changed in time. InSet 2, the
attackers appear to produce in average more that twice the amount of packets and bytes
compared toSet 1. This suggests that, while the attack mechanism stays the same, the
attacks’ intensities are likely to vary in the course of time. As a consequence, models
trained on real data would need periodical retrain.

Data Set Collection time Traces Avg. Flows/secAvg. Packets/secAvg. Bytes/sec

Set 1 13-20 July 2008 17 11.06 66.91 7337.33
Set 2 19-26 April 2009 13 15.80 150.52 19016.00

Table 1.Statistical characteristic of the collected data sets

5.2 Synthetic trace generation

We define a synthetic trace as the sequence of observations that the model outputs when
a random path is taken. The generation process can be summarized as follows. Let’s
assume the model to be in statesi:

1. at timet, the model jumps from the current statesi to the next statesj according to
the transition probabilitiesaij , j = 1, . . . n.

2. if sj is theEnd state, the path is concluded and the trace ends.
3. oncesj has been selected, the model randomly selectsF , PPF andBPP .
4. the model outputs the triple(F, P, B), calculated on the basis of the random values

generated in the previous step (as explained in Section 4.3).
5. once the observations have been emitted, the process iterates from step 1.

At each iteration, the model chooses which triple(F, P, B) will be emitted. This
choice is independent from the previous outputs and is controlled only by the empirical
probability distributions ofF , PPF andBPP associated with the current state. Table
2 presents the range of these distributions for bothSet 1andSet 2. The model controls
also the duration of a trace, since a trace ends only when a transition to theEnd state is
randomly selected.

5.3 Testing methodology

Our testing methodology aims to measure the average statistical characteristics of a set
of synthetic traces and compare them to the ones of the original data setsSet 1andSet
2. Each statistical metric is calculated for flows, packets and bytes. We are interested in
three types of statistical measures:

Distribution Set 1 Set 2
Min Max Min Max

F phase 1 1 789 1 3825
F phase 2 1 519 1 860
F phase 3 1 227 1 250

PPF phase 1 1 26.4841 1 27
PPF phase 2 1 16.5 1 17
PPF phase 3 1 5 1 5

BPP phase 1 40 156.42 40 225.71
BPP phase 250.88 267.27 52 319.42
BPP phase 3 40 836 46 1148

Table 2.Empirical distribution ranges for the training data sets

– the mean and standard deviation for flow (µF , σF), packets (µP , σP) and bytes
(µB, σB). These measures describe theoverall behaviorof flows, packets and bytes
independently of each other in a trace.

– the correlation coefficientsρFP , ρFB andρPB between flows, packets and bytes.
These measures describe thedependencebetween flows, packets and bytes in the
same trace.

– autocorrelation of lag 1 of flows (RF), packets (RP) and bytes(RB). The autocor-
relation captures theevolutionof a trace over time, measuring the interrelation of
the trace with itself in different moments in time.

The previously introduced measures are relative to a singletrace. In our experimen-
tal results, we calculate the average values of each measurefor both the original data
sets and the synthetic ones. For the synthetic trace, we alsocalculate the 95% confi-
dence intervals. Each synthetic data set consists of 300 traces. Finally, we evaluate how
well the synthetic traces approximate the original ones. Inorder to do so, we calculate
for each measurem the relative error between the original traces and the synthetic ones:

Err =
|morig − msyn|

morig

5.4 Experimental results

This subsection presents the numerical results obtained from the analysis of the syn-
thetic data sets. Table 3 offers an overview of the average statistical measures for both
the original and the synthetic data sets. The same table alsolists the relative error be-
tween original and synthetic measures. The results will be discussed in the following
sections.

Average mean and standard deviationBoth the model trained onSet 1and the one
trained onSet 2approximate the averages of flows, packets and bytes within a10%
relative error.

Set 1 Synthetic 1 Err Set 2 Synthetic 2 Err

µF 11.06 12.27± 0.33 0.109 15.80 15.15± 0.65 0.041
µP 66.91 66.66± 3.67 0.046 150.52 138.85± 8.5 0.077
µB 7337.33 7524.73± 523.11 0.025 19016.00 18107.88± 1153.53 0.047
σF 36.45 38.33± 1.12 0.051 40.0 47.01± 1.87 0.174
σP 324.29 243.43± 10.91 0.249 379.38 419.16± 16.55 0.104
σB 28510.35 28345.60± 1616.630.005 47060.07 55378.58± 2239.910.176

ρF P 0.79 0.79± 0.012 0.001 0.83 0.86± 0.01 0.039
ρF B 0.76 0.74± 0.016 0.023 0.79 0.81± 0.01 0.024
ρPB 0.94 0.98± 0.002 0.047 0.98 0.98± 0.001 0.001

µRF
0.46 0.23± 0.009 0.498 0.64 0.26±0.01 0.593

µRP
0.56 0.25± 0.012 0.547 0.71 0.30± 0.009 0.577

µRB
0.58 0.26± 0.012 0.549 0.75 0.30± 0.009 0.592

Table 3.Numerical comparison between the original and the synthetic data sets.

The results also show that our approach approximates the standard deviation of both
the original data sets within 10% relative error, with only few exceptions: the average
standard deviation of packets forSet 1and the average standard deviations of flows and
bytes forSet 2. RegardingSet 1, the synthetic measure underestimates the one in the
original data set. On the contrary, inSet 2, the synthetic measures are higher than the
original. We suspect this phenomenon is related to the autocorrelation of the traces in
the original data sets.

Table 3 also presents the 95% confidence intervals for the average means and the
standard deviations. For all measures, the confidence intervals are close to the average
values.

Average correlation The correlation coefficients show that the proposed model isable
to capture the interrelations between flows, packets and bytes, despite that the realiza-
tions of the random variablesF andPPF are independently drawn. The relative error
in the case of the correlation coefficients is indeed less or equal to 4.7% (ρPB) in the
case ofSet 1and less or equal to 3% (ρFP) in the case ofSet 2.

In the same table we listed also the 95% confidence intervals for the average corre-
lation coefficients. As in the case of the average relative error, described in the previous
section, the confidence intervals are closed to the mean values.

Average autocorrelation The last measure we consider is the average autocorrelation.
The autocorrelation characterizes the temporal evolutionof a trace.

For bothSet 1andSet 2our model fails to approximate the autocorrelation values.
The autocorrelation of the synthetic traces, indeed, is roughly half of the autocorrelation
in the original data sets. This means that consecutive values in a synthetic trace have a
higher random component than in the original traces.

We believe that the cause of lower autocorrelation coefficients can be found in the
attacker behavior during the brute-force phase. The original traces, indeed, show that

during this phase the time series presents a certain regularity, as for example a bounded
number of flows per seconds. Our model, on the other hand, randomly selects at each
iteration new values for flows, packets and bytes, without any memory of the previous
outputs. This behavior is reflected in lower autocorrelation values. We consider to ex-
tend the model to capture regularity in the brute-force phase as a possible future work.

As for the previous measures, also in this case the confidenceintervals show that
the model has a low variability in the autocorrelation values.

6 Conclusions

In this paper, we have presented a compact model of SSH brute-force attacks based
on Hidden Markov Models. The model has been inferred on the basis of only flow
information and it encodes the network behavior of SSH attacks: scanning phase, brute-
force phase and die-off phase. The model parameters have been calculated on the basis
of real data traces captured at the University of Twente network.

In this paper we also demonstrate that the model, once trained on real data, is able
to emulate the network behavior of a SSH brute-force attacker. Synthetic traces approx-
imate the mean, standard deviation and correlation of flow, packet and byte time series
within 10% relative error. The model fails only in approximating the autocorrelation.
The synthetic traces, indeed, seem to have a higher random component than the original
training trace.

As far as we are aware, this was the first time that HMM have beenapplied to the
generation of flow-based time series for malicious users. The results are encouraging,
but many aspects are open for future work. First, we aim to refine the model. For exam-
ple, a more detailed model of the brute-force phase can improve the autocorrelation. In
addition, the empirical emission distributions can be substituted by estimated distribu-
tion functions to make the model resilient to unforeseen observations. Second, we plan
to adapt the model to be used for detection. In this context, we are also interested in
investigating if the model we proposed is suitable for detection of other brute-force at-
tacks that show a similar phase behavior. An example can be a brute-force attack against
the telnet service. Third, we want to apply our HMM approach to other attack types,
such as DoS attacks or worms.

References

1. Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., Stiller, B.: An Overview of
IP Flow-based Intrusion Detection. IEEE Communications Surveys & Tutorials (to appear)
(2009)

2. Quittek, J., Zseby, T., Claise, B., Zander, S.: Requirements for IP Flow Information Export
(IPFIX). RFC 3917 (Informational)

3. NfSen - Netflow Sensor. http://nfsen.sourceforge.net (May 2009)
4. Sperotto, A., Sadre, R., van Vliet, D.F., Pras, A.: A Labeled Data Set For Flow-based In-

trusion Detection. In: Proc. of the 9th IEEE International Workshop on IP Operations and
Management (IPOM ’09). (2009)

5. Brauckhoff, D., Wagner, A., Mays, M.: FLAME: a flow-level anomaly modeling engine. In:
Proc. of the Workshop on Cyber Security Experimentation andTest (CSET’08). (2008)

6. Sommers, J., Yegneswaran, V., Barford, P.: A framework for malicious workload generation.
In: Proc. of the 4th ACM SIGCOMM conference on Internet measurement (IMC ’04). (2004)

7. Camastra, F., Vinciarelli, A.: Markovian models for sequential data. In: Machine Learning
for Audio, Image and Video Analysis. (2008)

8. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the
Statistical Analysis of Probabilistic Functions of MarkovChains. The Annals of Mathemat-
ical Statistics41 (1970)

9. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilis-
tic Models of Proteins and Nucleic Acids. Cambridge University Press (1998)

10. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech
recognition. In: Proceedings of the IEEE. (1989)

11. Fink, G.A.: Markov Models for Pattern Recognition: FromTheory to Applications. Springer-
Verlag New York, Inc. (2007)

12. Wright, C.V., Monrose, F., Masson, G.M.: HMM Profiles forNetwork Traffic Classification.
In: Workshop on Visualization and Data Mining for Computer Security (VizSEC/DMSEC
’04). (2004)

13. Dainotti, A., Pescapé, A., Rossi, P.S., Palmieri, F., Ventre, G.: Internet traffic modeling by
means of Hidden Markov Models. Computer Networks52(14) (2008)

14. Dainotti, A., de Donato, W., Pescape, A., Rossi, P.: Classification of Network Traffic via
Packet-Level Hidden Markov Models. In: Proc. of IEEE GlobalTelecommunications Con-
ference (GLOBECOM 2008). (2008)

15. Gao, D., Reiter, M.K., Song, D.X.: Behavioral Distance Measurement Using Hidden Markov
Models. In: Proc. of 9th International Symposium Recent Advances in Intrusion Detection
(RAID ’06). (2006)

16. Warrender, C., Forrest, S., Pearlmutter, B.: DetectingIntrusions Using System Calls: Al-
ternative Data Models. In: Proc. of the 1999 IEEE Symposium on Security and Privacy.
(1999)

17. Khanna, R., Liu, H.: System approach to intrusion detection using hidden Markov model. In:
Proceedings of the 2006 International Conference on Wireless communications and mobile
computing (IWCMC ’06). (2006)

18. Song, D.X., Wagner, D., Tian, X.: Timing Analysis of Keystrokes and Timing Attacks on
SSH. In: Proc. of the 10th conference on USENIX Security Symposium (SSYM’01). (2001)

19. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext Recovery Attacks Against SSH. In:
Proc. of the 30th IEEE Symposium on Security and Privacy (SP ’09). (2009)

20. Seifert, C.: Analyzing malicious ssh login attempts.
http://www.securityfocus.com/infocus/1876 (September2006)

21. SANS Institute: Top-20 2007 Security Risks (2007 AnnualUpdate). www.sans.org (May
2009)

22. Sperotto, A., Sadre, R., Pras, A.: Anomaly Characterization in Flow-Based Traffic Time
Series . In: Proc. of the 8th IEEE International Workshop on IP Operations and Management
(IPOM ’08). (Sept 2008)

23. Andrieu, C., Doucet, A.: Simulated Annealing for Maximum A Posteriori Parameter Esti-
mation of Hidden Markov Models. IEEE Transactions on Information Theory46 (2000)

